{"title":"利用 RP-HPLC 和峰值纯度评估分析利匹韦林中的强制降解产物","authors":"Abburi Ramarao, Guttikonda Venkata Rao, S. Chinnamaneni, Komati Navya Sri, Mandava Bhagya Tej, Gollammudi Padma Rao, V. Abbaraju, Mandava Venkata Basaveswarao RaoBasaveswarao Rao","doi":"10.13005/ojc/390613","DOIUrl":null,"url":null,"abstract":"The primary objective of this research was to delve into the forced degradation products of Rilpivirine hydrochloride (RLP HCl), a crucial non-nucleoside reverse transcriptase inhibitor employed inmanagement of epidemic disease named HIV-1. The investigation utilised the probable of RP-HPLC in tandem with peak purity assessment .In order to simulate conceivable degradation pathways, the study encompassed a gamut of stress conditions like acidic, alkaline, oxidative , thermal and photolytic environments. Authors used Agilent zorbaxEclipse XDB C18 column (150x2.1mm, 1.8µm), RLP and impurities were separated. Buffer as pH of 3.0 and acetonitrile in gradient mode (68:32v/v), flow rate of 0.55ml/min. Volume injected is 3µL and detection wavelength is 220 nm. Temperature is maintained at 55oC by 70:30v/v mixture of water and acetonitrile.System suitability was erect to be within the limits. The average percentage recoveries for impurities were 98% to 101%.The outcomes of this meticulous study unveiled the susceptibilities of RLP to a spectrum of stress factors, in the generation of impurity profile RLP-Amide A, RLP-Amide Band Z-RLP with peak purities. The forced degradation tests demonstrate that the peak of RP-HPLC is spectroscopically pure in all stressed conditions. All degradation products are separated from the main peak and do not interfere with main substance. This exploration not only augments the comprehension of RLP’s stability profile but also underscores the pivotal role of analytical techniques in upholding the safety and efficacy benchmarks of pharmaceutical formulations.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":"50 2","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Forced Degradation Products in Rilpivirine using RP-HPLC and Peak Purity Evaluation\",\"authors\":\"Abburi Ramarao, Guttikonda Venkata Rao, S. Chinnamaneni, Komati Navya Sri, Mandava Bhagya Tej, Gollammudi Padma Rao, V. Abbaraju, Mandava Venkata Basaveswarao RaoBasaveswarao Rao\",\"doi\":\"10.13005/ojc/390613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this research was to delve into the forced degradation products of Rilpivirine hydrochloride (RLP HCl), a crucial non-nucleoside reverse transcriptase inhibitor employed inmanagement of epidemic disease named HIV-1. The investigation utilised the probable of RP-HPLC in tandem with peak purity assessment .In order to simulate conceivable degradation pathways, the study encompassed a gamut of stress conditions like acidic, alkaline, oxidative , thermal and photolytic environments. Authors used Agilent zorbaxEclipse XDB C18 column (150x2.1mm, 1.8µm), RLP and impurities were separated. Buffer as pH of 3.0 and acetonitrile in gradient mode (68:32v/v), flow rate of 0.55ml/min. Volume injected is 3µL and detection wavelength is 220 nm. Temperature is maintained at 55oC by 70:30v/v mixture of water and acetonitrile.System suitability was erect to be within the limits. The average percentage recoveries for impurities were 98% to 101%.The outcomes of this meticulous study unveiled the susceptibilities of RLP to a spectrum of stress factors, in the generation of impurity profile RLP-Amide A, RLP-Amide Band Z-RLP with peak purities. The forced degradation tests demonstrate that the peak of RP-HPLC is spectroscopically pure in all stressed conditions. All degradation products are separated from the main peak and do not interfere with main substance. This exploration not only augments the comprehension of RLP’s stability profile but also underscores the pivotal role of analytical techniques in upholding the safety and efficacy benchmarks of pharmaceutical formulations.\",\"PeriodicalId\":19599,\"journal\":{\"name\":\"Oriental Journal Of Chemistry\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oriental Journal Of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/ojc/390613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of Forced Degradation Products in Rilpivirine using RP-HPLC and Peak Purity Evaluation
The primary objective of this research was to delve into the forced degradation products of Rilpivirine hydrochloride (RLP HCl), a crucial non-nucleoside reverse transcriptase inhibitor employed inmanagement of epidemic disease named HIV-1. The investigation utilised the probable of RP-HPLC in tandem with peak purity assessment .In order to simulate conceivable degradation pathways, the study encompassed a gamut of stress conditions like acidic, alkaline, oxidative , thermal and photolytic environments. Authors used Agilent zorbaxEclipse XDB C18 column (150x2.1mm, 1.8µm), RLP and impurities were separated. Buffer as pH of 3.0 and acetonitrile in gradient mode (68:32v/v), flow rate of 0.55ml/min. Volume injected is 3µL and detection wavelength is 220 nm. Temperature is maintained at 55oC by 70:30v/v mixture of water and acetonitrile.System suitability was erect to be within the limits. The average percentage recoveries for impurities were 98% to 101%.The outcomes of this meticulous study unveiled the susceptibilities of RLP to a spectrum of stress factors, in the generation of impurity profile RLP-Amide A, RLP-Amide Band Z-RLP with peak purities. The forced degradation tests demonstrate that the peak of RP-HPLC is spectroscopically pure in all stressed conditions. All degradation products are separated from the main peak and do not interfere with main substance. This exploration not only augments the comprehension of RLP’s stability profile but also underscores the pivotal role of analytical techniques in upholding the safety and efficacy benchmarks of pharmaceutical formulations.
期刊介绍:
Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.