Bocheng Zhao, M. Huo, Ze Yu, Naiming Qi, Jianfeng Wang
{"title":"无人驾驶飞行器安全空中回收的模型参考强化学习","authors":"Bocheng Zhao, M. Huo, Ze Yu, Naiming Qi, Jianfeng Wang","doi":"10.3390/aerospace11010027","DOIUrl":null,"url":null,"abstract":"In this study, we propose an aerial rendezvous method to facilitate the recovery of unmanned aerial vehicles (UAVs) using carrier aircrafts, which is an important capability for the future use of UAVs. The main contribution of this study is the development of a promising method for online generation of feasible rendezvous trajectories for UAVs. First, the wake vortex of a carrier aircraft is analyzed using the finite element method, and a method for establishing a safety constraint model is proposed. Subsequently, a model-reference reinforcementearning algorithm is proposed based on the potential function method, which can ensure the convergence and stability of training. A combined reward function is designed to solve the UAV trajectory generation problem under non-convex constraints. The simulation results show that, compared with the traditional artificial potential field method under different working conditions, the success rate of this method under non-convex constraints is close to 100%, with high accuracy, convergence, and stability, and has greater application potential in the aerial recovery scenario, providing a solution to the trajectory generation problem of UAVs under non-convex constraints.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"162 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Reference Reinforcement Learning for Safe Aerial Recovery of Unmanned Aerial Vehicles\",\"authors\":\"Bocheng Zhao, M. Huo, Ze Yu, Naiming Qi, Jianfeng Wang\",\"doi\":\"10.3390/aerospace11010027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose an aerial rendezvous method to facilitate the recovery of unmanned aerial vehicles (UAVs) using carrier aircrafts, which is an important capability for the future use of UAVs. The main contribution of this study is the development of a promising method for online generation of feasible rendezvous trajectories for UAVs. First, the wake vortex of a carrier aircraft is analyzed using the finite element method, and a method for establishing a safety constraint model is proposed. Subsequently, a model-reference reinforcementearning algorithm is proposed based on the potential function method, which can ensure the convergence and stability of training. A combined reward function is designed to solve the UAV trajectory generation problem under non-convex constraints. The simulation results show that, compared with the traditional artificial potential field method under different working conditions, the success rate of this method under non-convex constraints is close to 100%, with high accuracy, convergence, and stability, and has greater application potential in the aerial recovery scenario, providing a solution to the trajectory generation problem of UAVs under non-convex constraints.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"162 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Model-Reference Reinforcement Learning for Safe Aerial Recovery of Unmanned Aerial Vehicles
In this study, we propose an aerial rendezvous method to facilitate the recovery of unmanned aerial vehicles (UAVs) using carrier aircrafts, which is an important capability for the future use of UAVs. The main contribution of this study is the development of a promising method for online generation of feasible rendezvous trajectories for UAVs. First, the wake vortex of a carrier aircraft is analyzed using the finite element method, and a method for establishing a safety constraint model is proposed. Subsequently, a model-reference reinforcementearning algorithm is proposed based on the potential function method, which can ensure the convergence and stability of training. A combined reward function is designed to solve the UAV trajectory generation problem under non-convex constraints. The simulation results show that, compared with the traditional artificial potential field method under different working conditions, the success rate of this method under non-convex constraints is close to 100%, with high accuracy, convergence, and stability, and has greater application potential in the aerial recovery scenario, providing a solution to the trajectory generation problem of UAVs under non-convex constraints.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.