用鸡肉、磷虾粉和植物蛋白的复合混合物替代鱼肉对鲈鱼生长、生理代谢和肠道微生物群的影响

IF 3 2区 农林科学 Q1 FISHERIES Aquaculture Nutrition Pub Date : 2023-12-27 DOI:10.1155/2023/2915916
Liyun Ding, Jiacheng Chen, Yanping Zhang, Jun Xiao, Xiandong Xu, Haixing Zhang, Qingtang Chen, Yuxiang Zhao, Wenjing Chen
{"title":"用鸡肉、磷虾粉和植物蛋白的复合混合物替代鱼肉对鲈鱼生长、生理代谢和肠道微生物群的影响","authors":"Liyun Ding, Jiacheng Chen, Yanping Zhang, Jun Xiao, Xiandong Xu, Haixing Zhang, Qingtang Chen, Yuxiang Zhao, Wenjing Chen","doi":"10.1155/2023/2915916","DOIUrl":null,"url":null,"abstract":"This trial aimed to investigate the influence of graded replacing fish meal (D1: 0.00%, D2: 27.27%, and D3: 54.55%) with mixed protein ingredients (i.e., chicken meal, krill meal, fermented soybean meal, and soy protein concentrate) on the growth performance, muscle nutritional composition, blood biochemical indices, gut bacterial community, and transcriptome of Chinese perch. Two hundred seventy Chinese perch were divided into three groups (90 per group) and the diet lasted for 56 days. Results showed that the weight gain rate and specific growth rate were significantly lower, and the feed conversion ratio was significantly higher in the D3 group than in fish fed D1 (P<0.05), with no significant differences between the D1 and D2 groups (P>0.05). The muscle crude protein content was highest in the D2 group, and the crude fat content was significantly different in the order: D3 > D1 > D2 (P<0.05). The levels of serum triglycerides (TG) and low-density lipoprotein cholesterol in the D2 group were significantly lower than those in the D1 group (P<0.05), but there was no significant difference compared to the D3 group (P>0.05). The microbial community structure changed significantly. Mycoplasma showed the highest abundance in the D1 and D2 groups (P<0.05), and Cetobacterium peaked in D2 group, and significantly higher than that in D1 group (P<0.05). Network analysis and cohesion index calculation showed that both network complexity and cohesion peaked in D2 group, and Cetobacterium was highly correlated with the cohesion index (P<0.05). Further, muscle transcriptome analysis results showed that compared with the control group, differentially expressed genes were clustered (Q < 0.05) in the arginine and proline metabolism pathways in D2 group. Fish in D3 group significantly (Q < 0.05) affected genes involved in KEGG pathways of ribosome, circadian rhythm, thermogenesis, insulin signaling pathway, fatty acid degradation, oxidative phosphorylation, and apoptosis. In conclusion, under the experimental conditions, the replacement of 27.27% of fish meal by the compound protein did not have a negative impact on the growth performance of Chinese perch and could improve muscle quality, lipid metabolism, and the interaction of intestinal microbiota.","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Dietary Fish Meal Replacement with Composite Mixture of Chicken Meal, Krill Meal, and Plant Proteins on Growth, Physiological Metabolism, and Intestinal Microbiota of Chinese Perch (Siniperca chuatsi)\",\"authors\":\"Liyun Ding, Jiacheng Chen, Yanping Zhang, Jun Xiao, Xiandong Xu, Haixing Zhang, Qingtang Chen, Yuxiang Zhao, Wenjing Chen\",\"doi\":\"10.1155/2023/2915916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This trial aimed to investigate the influence of graded replacing fish meal (D1: 0.00%, D2: 27.27%, and D3: 54.55%) with mixed protein ingredients (i.e., chicken meal, krill meal, fermented soybean meal, and soy protein concentrate) on the growth performance, muscle nutritional composition, blood biochemical indices, gut bacterial community, and transcriptome of Chinese perch. Two hundred seventy Chinese perch were divided into three groups (90 per group) and the diet lasted for 56 days. Results showed that the weight gain rate and specific growth rate were significantly lower, and the feed conversion ratio was significantly higher in the D3 group than in fish fed D1 (P<0.05), with no significant differences between the D1 and D2 groups (P>0.05). The muscle crude protein content was highest in the D2 group, and the crude fat content was significantly different in the order: D3 > D1 > D2 (P<0.05). The levels of serum triglycerides (TG) and low-density lipoprotein cholesterol in the D2 group were significantly lower than those in the D1 group (P<0.05), but there was no significant difference compared to the D3 group (P>0.05). The microbial community structure changed significantly. Mycoplasma showed the highest abundance in the D1 and D2 groups (P<0.05), and Cetobacterium peaked in D2 group, and significantly higher than that in D1 group (P<0.05). Network analysis and cohesion index calculation showed that both network complexity and cohesion peaked in D2 group, and Cetobacterium was highly correlated with the cohesion index (P<0.05). Further, muscle transcriptome analysis results showed that compared with the control group, differentially expressed genes were clustered (Q < 0.05) in the arginine and proline metabolism pathways in D2 group. Fish in D3 group significantly (Q < 0.05) affected genes involved in KEGG pathways of ribosome, circadian rhythm, thermogenesis, insulin signaling pathway, fatty acid degradation, oxidative phosphorylation, and apoptosis. In conclusion, under the experimental conditions, the replacement of 27.27% of fish meal by the compound protein did not have a negative impact on the growth performance of Chinese perch and could improve muscle quality, lipid metabolism, and the interaction of intestinal microbiota.\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2915916\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2023/2915916","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

本试验旨在研究鱼粉(D1:0.00%,D2:27.27%,D3:54.55%)与混合蛋白成分(即鸡肉粉、磷虾粉、发酵豆粕和大豆浓缩蛋白)的分级替代对中国鲈鱼生长性能、肌肉营养成分、血液生化指标、肠道细菌群落和转录组的影响。270 尾鲈鱼分为三组(每组 90 尾),饲养 56 天。结果表明,D3 组的增重率和特定生长率显著低于 D1 组,饲料转化率显著高于 D1 组(P0.05)。D2 组的肌肉粗蛋白含量最高,粗脂肪含量也有显著差异(P0.05):D3>D1>D2(P0.05)。微生物群落结构发生了显著变化。支原体在 D1 和 D2 组的丰度最高(P<0.05),鲸杆菌在 D2 组达到峰值,且明显高于 D1 组(P<0.05)。网络分析和内聚力指数计算显示,网络复杂度和内聚力均在D2组达到峰值,鲸杆菌与内聚力指数高度相关(P<0.05)。此外,肌肉转录组分析结果显示,与对照组相比,D2 组的差异表达基因主要集中在精氨酸和脯氨酸代谢途径(Q < 0.05)。D3组鱼类参与核糖体、昼夜节律、产热、胰岛素信号通路、脂肪酸降解、氧化磷酸化和细胞凋亡等KEGG通路的基因受到明显影响(Q < 0.05)。总之,在实验条件下,用复合蛋白替代 27.27%的鱼粉对鲈鱼的生长性能没有负面影响,并能改善肌肉质量、脂质代谢和肠道微生物群的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Dietary Fish Meal Replacement with Composite Mixture of Chicken Meal, Krill Meal, and Plant Proteins on Growth, Physiological Metabolism, and Intestinal Microbiota of Chinese Perch (Siniperca chuatsi)
This trial aimed to investigate the influence of graded replacing fish meal (D1: 0.00%, D2: 27.27%, and D3: 54.55%) with mixed protein ingredients (i.e., chicken meal, krill meal, fermented soybean meal, and soy protein concentrate) on the growth performance, muscle nutritional composition, blood biochemical indices, gut bacterial community, and transcriptome of Chinese perch. Two hundred seventy Chinese perch were divided into three groups (90 per group) and the diet lasted for 56 days. Results showed that the weight gain rate and specific growth rate were significantly lower, and the feed conversion ratio was significantly higher in the D3 group than in fish fed D1 (P<0.05), with no significant differences between the D1 and D2 groups (P>0.05). The muscle crude protein content was highest in the D2 group, and the crude fat content was significantly different in the order: D3 > D1 > D2 (P<0.05). The levels of serum triglycerides (TG) and low-density lipoprotein cholesterol in the D2 group were significantly lower than those in the D1 group (P<0.05), but there was no significant difference compared to the D3 group (P>0.05). The microbial community structure changed significantly. Mycoplasma showed the highest abundance in the D1 and D2 groups (P<0.05), and Cetobacterium peaked in D2 group, and significantly higher than that in D1 group (P<0.05). Network analysis and cohesion index calculation showed that both network complexity and cohesion peaked in D2 group, and Cetobacterium was highly correlated with the cohesion index (P<0.05). Further, muscle transcriptome analysis results showed that compared with the control group, differentially expressed genes were clustered (Q < 0.05) in the arginine and proline metabolism pathways in D2 group. Fish in D3 group significantly (Q < 0.05) affected genes involved in KEGG pathways of ribosome, circadian rhythm, thermogenesis, insulin signaling pathway, fatty acid degradation, oxidative phosphorylation, and apoptosis. In conclusion, under the experimental conditions, the replacement of 27.27% of fish meal by the compound protein did not have a negative impact on the growth performance of Chinese perch and could improve muscle quality, lipid metabolism, and the interaction of intestinal microbiota.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
期刊最新文献
Supplementing the Diet of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) with Compound Acidifier Is a Good Way to Alleviate Poor Intestinal Growth Caused by High Levels of Cottonseed Protein Concentrate Effects of Replacing Inorganic with Organic Glycinates Trace Minerals on Growth Performance, Gut Function, and Minerals Loss of Juvenile Nile Tilapia The Use of Perovskia abrotanoides Extract in Ameliorating Heat Stress-Induced Oxidative Damage and Improving Growth Efficiency in Carp Juveniles (Cyprinus carpio) The Effect of Supplementation of Fish Protein Hydrolysate to the BSF-Based Aquafeed on the Growth, Survival, Fatty Acids, and Histopathology of Juvenile Lobster (Panulirus ornatus) Taurine Alleviated the Negative Effects of an Oxidized Lipid Diet on Growth Performance, Antioxidant Properties, and Muscle Quality of the Common Carp (Cyprinus carpio L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1