Mokhlesur R. M, Tahmid C. A, Hassan S, Zubaer M, Awang M, Hasan M
{"title":"通过量子计算提高大麻提取效率和可持续性:综述","authors":"Mokhlesur R. M, Tahmid C. A, Hassan S, Zubaer M, Awang M, Hasan M","doi":"10.13005/ojc/390604","DOIUrl":null,"url":null,"abstract":"The plant is also known as hemp, although this term is often used only to refer to varieties of cannabis cultivated for non-drug use. Cannabis has long been used as hemp fiber, hemp seeds and their oil, hemp leaves as vegetable and juice, for medicinal purposes and as a recreational drug. It has been widely used specifically in incense, peaceful sleep for cancer affected patients and traditional medicine. Its common uses include treating knee joint pain, inflammatory-related complaints, diarrhea, and a tonic, sedative, and cardio caring agent. Cannabis sativa is the hemp plant from which marijuana and cannabinoids (leaves, stems, seeds) are derived. The most potent form of this plant's extracts is hash oil, a liquid. Quantum computing, on the other hand, offers unprecedented computational power and can revolutionize various scientific fields. The study's goal is to explore the potential of quantum computing to enhance the extraction process. By employing quantum algorithms, the project aims to optimize critical parameters such as pressure, temperature, and extraction time, leading to improved efficiency and higher yields. Quantum simulations will model the behavior of CO2 as a supercritical fluid within the cannabis matrix, supplying insights into the complex dynamics of the extraction process. Finally, the use of quantum algorithms promises to ease the development of more efficient and sustainable extraction methods, resulting in the production of high-quality cannabis-derived products with enhanced medicinal and industrial applications.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":"113 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Cannabis Extraction Efficiency and Sustainability through Quantum Computing: A Review\",\"authors\":\"Mokhlesur R. M, Tahmid C. A, Hassan S, Zubaer M, Awang M, Hasan M\",\"doi\":\"10.13005/ojc/390604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plant is also known as hemp, although this term is often used only to refer to varieties of cannabis cultivated for non-drug use. Cannabis has long been used as hemp fiber, hemp seeds and their oil, hemp leaves as vegetable and juice, for medicinal purposes and as a recreational drug. It has been widely used specifically in incense, peaceful sleep for cancer affected patients and traditional medicine. Its common uses include treating knee joint pain, inflammatory-related complaints, diarrhea, and a tonic, sedative, and cardio caring agent. Cannabis sativa is the hemp plant from which marijuana and cannabinoids (leaves, stems, seeds) are derived. The most potent form of this plant's extracts is hash oil, a liquid. Quantum computing, on the other hand, offers unprecedented computational power and can revolutionize various scientific fields. The study's goal is to explore the potential of quantum computing to enhance the extraction process. By employing quantum algorithms, the project aims to optimize critical parameters such as pressure, temperature, and extraction time, leading to improved efficiency and higher yields. Quantum simulations will model the behavior of CO2 as a supercritical fluid within the cannabis matrix, supplying insights into the complex dynamics of the extraction process. Finally, the use of quantum algorithms promises to ease the development of more efficient and sustainable extraction methods, resulting in the production of high-quality cannabis-derived products with enhanced medicinal and industrial applications.\",\"PeriodicalId\":19599,\"journal\":{\"name\":\"Oriental Journal Of Chemistry\",\"volume\":\"113 4\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oriental Journal Of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/ojc/390604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Cannabis Extraction Efficiency and Sustainability through Quantum Computing: A Review
The plant is also known as hemp, although this term is often used only to refer to varieties of cannabis cultivated for non-drug use. Cannabis has long been used as hemp fiber, hemp seeds and their oil, hemp leaves as vegetable and juice, for medicinal purposes and as a recreational drug. It has been widely used specifically in incense, peaceful sleep for cancer affected patients and traditional medicine. Its common uses include treating knee joint pain, inflammatory-related complaints, diarrhea, and a tonic, sedative, and cardio caring agent. Cannabis sativa is the hemp plant from which marijuana and cannabinoids (leaves, stems, seeds) are derived. The most potent form of this plant's extracts is hash oil, a liquid. Quantum computing, on the other hand, offers unprecedented computational power and can revolutionize various scientific fields. The study's goal is to explore the potential of quantum computing to enhance the extraction process. By employing quantum algorithms, the project aims to optimize critical parameters such as pressure, temperature, and extraction time, leading to improved efficiency and higher yields. Quantum simulations will model the behavior of CO2 as a supercritical fluid within the cannabis matrix, supplying insights into the complex dynamics of the extraction process. Finally, the use of quantum algorithms promises to ease the development of more efficient and sustainable extraction methods, resulting in the production of high-quality cannabis-derived products with enhanced medicinal and industrial applications.
期刊介绍:
Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.