{"title":"动态冲击后的砌体修复。计算和设计方法","authors":"Oleg Kabantsev, Oleg Simakov","doi":"10.22337/2587-9618-2023-19-4-48-68","DOIUrl":null,"url":null,"abstract":"Civil engineers are encouraged to apply novel techniques, to improve and to adapt well-known methods amid the reality of modern life. An impressive number of restoration and strengthening techniques are developed for unreinforced masonry (URM) material well-known for centuries. Masonry may need restoration and strengthening due to errors made in the course of design, construction or long-term operation of buildings and structures. Besides, masonry needs strengthening in seismic areas. Strengthening of masonry structures, subjected to dynamic impacts during military operations, was initiated after the Second World War. Construction technologies advanced considerably over the last seventy years, and today shotcrete, a widely known strengthening technique, can be applied for a good reason. This article addresses shotcrete as a method for restoring masonry damaged by explosion impacts. Results of the laboratory testing of materials and parts of structures are provided together with improved methods of analysis. The methodology for computer-aided analysis of buildings is also presented, taking into account the staged nature of work and the ability of external shotcrete to support loads. Practical restoration of buildings is addressed in the conclusions section, and conclusions are drawn there.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"5 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ВОССТАНОВЛЕНИЕ КАМЕННОЙ КЛАДКИ ПОСЛЕ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ. МЕТОДЫ РАСЧЕТА И ПРОЕКТИРОВАНИЯ\",\"authors\":\"Oleg Kabantsev, Oleg Simakov\",\"doi\":\"10.22337/2587-9618-2023-19-4-48-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Civil engineers are encouraged to apply novel techniques, to improve and to adapt well-known methods amid the reality of modern life. An impressive number of restoration and strengthening techniques are developed for unreinforced masonry (URM) material well-known for centuries. Masonry may need restoration and strengthening due to errors made in the course of design, construction or long-term operation of buildings and structures. Besides, masonry needs strengthening in seismic areas. Strengthening of masonry structures, subjected to dynamic impacts during military operations, was initiated after the Second World War. Construction technologies advanced considerably over the last seventy years, and today shotcrete, a widely known strengthening technique, can be applied for a good reason. This article addresses shotcrete as a method for restoring masonry damaged by explosion impacts. Results of the laboratory testing of materials and parts of structures are provided together with improved methods of analysis. The methodology for computer-aided analysis of buildings is also presented, taking into account the staged nature of work and the ability of external shotcrete to support loads. Practical restoration of buildings is addressed in the conclusions section, and conclusions are drawn there.\",\"PeriodicalId\":36116,\"journal\":{\"name\":\"International Journal for Computational Civil and Structural Engineering\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Civil and Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22337/2587-9618-2023-19-4-48-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Civil and Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22337/2587-9618-2023-19-4-48-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
ВОССТАНОВЛЕНИЕ КАМЕННОЙ КЛАДКИ ПОСЛЕ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ. МЕТОДЫ РАСЧЕТА И ПРОЕКТИРОВАНИЯ
Civil engineers are encouraged to apply novel techniques, to improve and to adapt well-known methods amid the reality of modern life. An impressive number of restoration and strengthening techniques are developed for unreinforced masonry (URM) material well-known for centuries. Masonry may need restoration and strengthening due to errors made in the course of design, construction or long-term operation of buildings and structures. Besides, masonry needs strengthening in seismic areas. Strengthening of masonry structures, subjected to dynamic impacts during military operations, was initiated after the Second World War. Construction technologies advanced considerably over the last seventy years, and today shotcrete, a widely known strengthening technique, can be applied for a good reason. This article addresses shotcrete as a method for restoring masonry damaged by explosion impacts. Results of the laboratory testing of materials and parts of structures are provided together with improved methods of analysis. The methodology for computer-aided analysis of buildings is also presented, taking into account the staged nature of work and the ability of external shotcrete to support loads. Practical restoration of buildings is addressed in the conclusions section, and conclusions are drawn there.