{"title":"考虑开裂因素的大体积钢筋混凝土结构非线性分析","authors":"V. Agapov, Alexey Markovich","doi":"10.22337/2587-9618-2023-19-4-14-26","DOIUrl":null,"url":null,"abstract":"A finite element method, as well as the algorithm and the program for solid reinforced concrete structures analysis have been developed, taking into account plastic deformations of concrete. A modified Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic model. An eight-node solid finite element with linear approximation of displacement functions, which implements the deformation models above mentioned, is constructed. This finite element is adapted to the PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results with experimental data confirmed the high accuracy and reliability of the results obtained.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"18 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"НЕЛИНЕЙНЫЙ АНАЛИЗ МАССИВНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С УЧЕТОМ ТРЕЩИНООБРАЗОВАНИЯ\",\"authors\":\"V. Agapov, Alexey Markovich\",\"doi\":\"10.22337/2587-9618-2023-19-4-14-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite element method, as well as the algorithm and the program for solid reinforced concrete structures analysis have been developed, taking into account plastic deformations of concrete. A modified Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic model. An eight-node solid finite element with linear approximation of displacement functions, which implements the deformation models above mentioned, is constructed. This finite element is adapted to the PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results with experimental data confirmed the high accuracy and reliability of the results obtained.\",\"PeriodicalId\":36116,\"journal\":{\"name\":\"International Journal for Computational Civil and Structural Engineering\",\"volume\":\"18 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Civil and Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22337/2587-9618-2023-19-4-14-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Civil and Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22337/2587-9618-2023-19-4-14-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
НЕЛИНЕЙНЫЙ АНАЛИЗ МАССИВНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С УЧЕТОМ ТРЕЩИНООБРАЗОВАНИЯ
A finite element method, as well as the algorithm and the program for solid reinforced concrete structures analysis have been developed, taking into account plastic deformations of concrete. A modified Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic model. An eight-node solid finite element with linear approximation of displacement functions, which implements the deformation models above mentioned, is constructed. This finite element is adapted to the PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results with experimental data confirmed the high accuracy and reliability of the results obtained.