Zhiqiang Fu, Wujie Zhang, Tong Zhao, Yan Wang, L. Duan, Haozhe Liu
{"title":"准静态和冲击载荷下聚乙烯泡沫的构造建模与模拟","authors":"Zhiqiang Fu, Wujie Zhang, Tong Zhao, Yan Wang, L. Duan, Haozhe Liu","doi":"10.1177/0021955x231224769","DOIUrl":null,"url":null,"abstract":"In this paper, quasi-static and dynamic compression experiments were carried out on polyethylene foam by a universal material testing machine and a drop tower impact device. The mechanical response characteristics and energy absorption capacity of polyethylene foam under quasi-static and moderate strain rate (4 × 10−3–102s−1) loading conditions were obtained. An improved constitutive model of strain-rate term coupling strain and strain rate was established based on the Sherwood–Frost phenomenological constitutive model and Johnson–Cook constitutive model. Low Density Foam model combined in the finite element software ABAQUS with the improved constitutive model was used as the parameter definition of polyethylene foam material in the simulation. The drop-tower impact tests at different heights were simulated, and the simulation results were compared with the actual drop tower impact test results. The results showed that the peak acceleration errors between simulation and experiment were less than 7.1%, verifying the accuracy of the constitutive model. This study provides a method of constitutive models and finite element simulation to the performance of polymer foams.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"9 24","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive modeling and simulation of polyethylene foam under quasi-static and impact loading\",\"authors\":\"Zhiqiang Fu, Wujie Zhang, Tong Zhao, Yan Wang, L. Duan, Haozhe Liu\",\"doi\":\"10.1177/0021955x231224769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, quasi-static and dynamic compression experiments were carried out on polyethylene foam by a universal material testing machine and a drop tower impact device. The mechanical response characteristics and energy absorption capacity of polyethylene foam under quasi-static and moderate strain rate (4 × 10−3–102s−1) loading conditions were obtained. An improved constitutive model of strain-rate term coupling strain and strain rate was established based on the Sherwood–Frost phenomenological constitutive model and Johnson–Cook constitutive model. Low Density Foam model combined in the finite element software ABAQUS with the improved constitutive model was used as the parameter definition of polyethylene foam material in the simulation. The drop-tower impact tests at different heights were simulated, and the simulation results were compared with the actual drop tower impact test results. The results showed that the peak acceleration errors between simulation and experiment were less than 7.1%, verifying the accuracy of the constitutive model. This study provides a method of constitutive models and finite element simulation to the performance of polymer foams.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"9 24\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955x231224769\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955x231224769","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Constitutive modeling and simulation of polyethylene foam under quasi-static and impact loading
In this paper, quasi-static and dynamic compression experiments were carried out on polyethylene foam by a universal material testing machine and a drop tower impact device. The mechanical response characteristics and energy absorption capacity of polyethylene foam under quasi-static and moderate strain rate (4 × 10−3–102s−1) loading conditions were obtained. An improved constitutive model of strain-rate term coupling strain and strain rate was established based on the Sherwood–Frost phenomenological constitutive model and Johnson–Cook constitutive model. Low Density Foam model combined in the finite element software ABAQUS with the improved constitutive model was used as the parameter definition of polyethylene foam material in the simulation. The drop-tower impact tests at different heights were simulated, and the simulation results were compared with the actual drop tower impact test results. The results showed that the peak acceleration errors between simulation and experiment were less than 7.1%, verifying the accuracy of the constitutive model. This study provides a method of constitutive models and finite element simulation to the performance of polymer foams.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.