{"title":"论因果回归分析中控制变量的滋扰","authors":"Paul Hünermund, Beyers Louw","doi":"10.1177/10944281231219274","DOIUrl":null,"url":null,"abstract":"Control variables are included in regression analyses to estimate the causal effect of a treatment on an outcome. In this article, we argue that the estimated effect sizes of controls are unlikely to have a causal interpretation themselves, though. This is because even valid controls are possibly endogenous and represent a combination of several different causal mechanisms operating jointly on the outcome, which is hard to interpret theoretically. Therefore, we recommend refraining from interpreting the marginal effects of controls and focusing on the main variables of interest, for which a plausible identification argument can be established. To prevent erroneous managerial or policy implications, coefficients of control variables should be clearly marked as not having a causal interpretation or omitted from regression tables altogether. Moreover, we advise against using control variable estimates for subsequent theory building and meta-analyses.","PeriodicalId":507528,"journal":{"name":"Organizational Research Methods","volume":"33 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nuisance of Control Variables in Causal Regression Analysis\",\"authors\":\"Paul Hünermund, Beyers Louw\",\"doi\":\"10.1177/10944281231219274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control variables are included in regression analyses to estimate the causal effect of a treatment on an outcome. In this article, we argue that the estimated effect sizes of controls are unlikely to have a causal interpretation themselves, though. This is because even valid controls are possibly endogenous and represent a combination of several different causal mechanisms operating jointly on the outcome, which is hard to interpret theoretically. Therefore, we recommend refraining from interpreting the marginal effects of controls and focusing on the main variables of interest, for which a plausible identification argument can be established. To prevent erroneous managerial or policy implications, coefficients of control variables should be clearly marked as not having a causal interpretation or omitted from regression tables altogether. Moreover, we advise against using control variable estimates for subsequent theory building and meta-analyses.\",\"PeriodicalId\":507528,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"33 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281231219274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10944281231219274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Nuisance of Control Variables in Causal Regression Analysis
Control variables are included in regression analyses to estimate the causal effect of a treatment on an outcome. In this article, we argue that the estimated effect sizes of controls are unlikely to have a causal interpretation themselves, though. This is because even valid controls are possibly endogenous and represent a combination of several different causal mechanisms operating jointly on the outcome, which is hard to interpret theoretically. Therefore, we recommend refraining from interpreting the marginal effects of controls and focusing on the main variables of interest, for which a plausible identification argument can be established. To prevent erroneous managerial or policy implications, coefficients of control variables should be clearly marked as not having a causal interpretation or omitted from regression tables altogether. Moreover, we advise against using control variable estimates for subsequent theory building and meta-analyses.