ohyeah at vlsp2022-evjvqa challenge: a jointly language-image model for multilingual visual question answering(用于多语言视觉问题解答的语言-图像联合模型)...

Luan Ngo Dinh, Hiếu Lê Ngọc, Long Quoc Phan
{"title":"ohyeah at vlsp2022-evjvqa challenge: a jointly language-image model for multilingual visual question answering(用于多语言视觉问题解答的语言-图像联合模型)...","authors":"Luan Ngo Dinh, Hiếu Lê Ngọc, Long Quoc Phan","doi":"10.15625/1813-9663/18122","DOIUrl":null,"url":null,"abstract":"Multilingual Visual Question Answering (mVQA) is an extremely challenging task which needs to answer a question given in different languages and take the context in an image. This problem can only be addressed by the combination of Natural Language Processing and Computer Vision. In this paper, we propose applying a jointly developed model to the task of multilingual visual question answering. Specifically, we conduct experiments on a multimodal sequence-to-sequence transformer model derived from the T5 encoder-decoder architecture. Text tokens and Vision Transformer (ViT) dense image embeddings are inputs to an encoder then we used a decoder to automatically anticipate discrete text tokens. We achieved the F1-score of 0.4349 on the private test set and ranked 2nd in the EVJVQA task at the VLSP shared task 2022. For reproducing the result, the code can be found at https://github.com/DinhLuan14/VLSP2022-VQA-OhYeah","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"21 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING\",\"authors\":\"Luan Ngo Dinh, Hiếu Lê Ngọc, Long Quoc Phan\",\"doi\":\"10.15625/1813-9663/18122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilingual Visual Question Answering (mVQA) is an extremely challenging task which needs to answer a question given in different languages and take the context in an image. This problem can only be addressed by the combination of Natural Language Processing and Computer Vision. In this paper, we propose applying a jointly developed model to the task of multilingual visual question answering. Specifically, we conduct experiments on a multimodal sequence-to-sequence transformer model derived from the T5 encoder-decoder architecture. Text tokens and Vision Transformer (ViT) dense image embeddings are inputs to an encoder then we used a decoder to automatically anticipate discrete text tokens. We achieved the F1-score of 0.4349 on the private test set and ranked 2nd in the EVJVQA task at the VLSP shared task 2022. For reproducing the result, the code can be found at https://github.com/DinhLuan14/VLSP2022-VQA-OhYeah\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"21 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/18122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多语言视觉问题解答(mVQA)是一项极具挑战性的任务,它需要回答用不同语言提出的问题,并在图像中提取上下文。这个问题只能通过自然语言处理和计算机视觉的结合来解决。在本文中,我们建议将联合开发的模型应用于多语言视觉问题解答任务。具体来说,我们将对源自 T5 编码器-解码器架构的多模态序列-序列转换器模型进行实验。文本标记和视觉转换器(ViT)密集图像嵌入是编码器的输入,然后我们使用解码器自动预测离散文本标记。我们在私人测试集上取得了 0.4349 的 F1 分数,并在 2022 年 VLSP 共享任务中的 EVJVQA 任务中排名第二。要重现这一结果,可在 https://github.com/DinhLuan14/VLSP2022-VQA-OhYeah 上找到相关代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING
Multilingual Visual Question Answering (mVQA) is an extremely challenging task which needs to answer a question given in different languages and take the context in an image. This problem can only be addressed by the combination of Natural Language Processing and Computer Vision. In this paper, we propose applying a jointly developed model to the task of multilingual visual question answering. Specifically, we conduct experiments on a multimodal sequence-to-sequence transformer model derived from the T5 encoder-decoder architecture. Text tokens and Vision Transformer (ViT) dense image embeddings are inputs to an encoder then we used a decoder to automatically anticipate discrete text tokens. We achieved the F1-score of 0.4349 on the private test set and ranked 2nd in the EVJVQA task at the VLSP shared task 2022. For reproducing the result, the code can be found at https://github.com/DinhLuan14/VLSP2022-VQA-OhYeah
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROVING THE SECURITY OF AES BLOCK CIPHER BASED ON MODIFIED MIXCOLUMN AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING THE VNPT-IT EMOTION TRANSPLANTATION APPROACH FOR VLSP 2022 TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1