Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang, Ying Nan
{"title":"从空中交通管制员的语音和目光数据中分析多模式疲劳信息","authors":"Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang, Ying Nan","doi":"10.3390/aerospace11010015","DOIUrl":null,"url":null,"abstract":"In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement the basis for discrimination, we also extracted eye-fatigue-state discrimination features based on Percentage of Eyelid Closure Duration (PERCLOS) eye data. To merge the two classes of discrimination results, a new controller fatigue-state evaluation index based on the entropy weight method is proposed, based on a decision-level fusion of fatigue discrimination results for speech and the eyes. The experimental results show that the fatigue-state recognition accuracy rate was 86.0% for the fatigue state evaluation index, which was 3.5% and 2.2%higher than those for speech and eye assessments, respectively. The comprehensive fatigue evaluation index provides important reference values for controller scheduling and mental-state evaluations.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"331 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Multi-Mode Fatigue Information from Speech and Gaze Data from Air Traffic Controllers\",\"authors\":\"Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang, Ying Nan\",\"doi\":\"10.3390/aerospace11010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement the basis for discrimination, we also extracted eye-fatigue-state discrimination features based on Percentage of Eyelid Closure Duration (PERCLOS) eye data. To merge the two classes of discrimination results, a new controller fatigue-state evaluation index based on the entropy weight method is proposed, based on a decision-level fusion of fatigue discrimination results for speech and the eyes. The experimental results show that the fatigue-state recognition accuracy rate was 86.0% for the fatigue state evaluation index, which was 3.5% and 2.2%higher than those for speech and eye assessments, respectively. The comprehensive fatigue evaluation index provides important reference values for controller scheduling and mental-state evaluations.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"331 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010015\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Analyzing Multi-Mode Fatigue Information from Speech and Gaze Data from Air Traffic Controllers
In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement the basis for discrimination, we also extracted eye-fatigue-state discrimination features based on Percentage of Eyelid Closure Duration (PERCLOS) eye data. To merge the two classes of discrimination results, a new controller fatigue-state evaluation index based on the entropy weight method is proposed, based on a decision-level fusion of fatigue discrimination results for speech and the eyes. The experimental results show that the fatigue-state recognition accuracy rate was 86.0% for the fatigue state evaluation index, which was 3.5% and 2.2%higher than those for speech and eye assessments, respectively. The comprehensive fatigue evaluation index provides important reference values for controller scheduling and mental-state evaluations.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.