M. Chebanov, H. Pcholkin, A. Makurin, O. Lozhnikov
{"title":"开采钛矿床时斗轮挖掘机前进沟技术参数的论证","authors":"M. Chebanov, H. Pcholkin, A. Makurin, O. Lozhnikov","doi":"10.33271/nvngu/2023-6/005","DOIUrl":null,"url":null,"abstract":"Purpose. To justify the parameters of the technological scheme of working out an advanced overburden bench by a bucket-wheel excavator, to reduce the cost of overburden work at Pit 7 of Vilnohirsk Mining and Metallurgical Plant. Methodology. Setting the parameters of the technological scheme of the bucket-wheel excavator was performed by the graphic-analytical method, which involves taking into account the technical characteristics of the mining machine, the physical and mechanical properties of the mining rocks and the stable slope angle of the advanced overburden bench. The substantiation of the effectiveness of application of the technological scheme with a forward trench was made by the technical and economic calculation of the specific costs on overburden works. Findings. The possibility of increasing the height of the overburden bench when using a technological scheme with a forward trench was evaluated. Reasonable parameters of the forward trench, in which the bucket-wheel excavator can develop a forward pit bench with a capacity of 40 m with a stable slope angle of 30°. This allows reducing the amount of mining haulage equipment and reducing overburden costs by up to 50 %. Originality. The minimum slope angle of the overburden slope at the maximum digging height of the ERShR-1600-40/7 excavator, which is equal to 40° at a slope height of 40 m, was established. The dependence of the resulting slope angle of on the re-excavation coefficient of the mining rock mass was established. This makes it possible to assert that when this angle is increased the re-excavation rate will decrease. It was established that at the applying technological scheme with a forward trench in the conditions of Vilnohirsk MMP, the coefficient of overburden re-excavation will be k = 0.09. Practical value. A technological scheme for the development of an advanced overburden bench by the bucket-wheel excavator with a forward trench allows increasing its developed bench height. This makes it possible to reduce the operational cost for overburden works by refuse from haulage mining system with dump trucks.","PeriodicalId":19101,"journal":{"name":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits\",\"authors\":\"M. Chebanov, H. Pcholkin, A. Makurin, O. Lozhnikov\",\"doi\":\"10.33271/nvngu/2023-6/005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. To justify the parameters of the technological scheme of working out an advanced overburden bench by a bucket-wheel excavator, to reduce the cost of overburden work at Pit 7 of Vilnohirsk Mining and Metallurgical Plant. Methodology. Setting the parameters of the technological scheme of the bucket-wheel excavator was performed by the graphic-analytical method, which involves taking into account the technical characteristics of the mining machine, the physical and mechanical properties of the mining rocks and the stable slope angle of the advanced overburden bench. The substantiation of the effectiveness of application of the technological scheme with a forward trench was made by the technical and economic calculation of the specific costs on overburden works. Findings. The possibility of increasing the height of the overburden bench when using a technological scheme with a forward trench was evaluated. Reasonable parameters of the forward trench, in which the bucket-wheel excavator can develop a forward pit bench with a capacity of 40 m with a stable slope angle of 30°. This allows reducing the amount of mining haulage equipment and reducing overburden costs by up to 50 %. Originality. The minimum slope angle of the overburden slope at the maximum digging height of the ERShR-1600-40/7 excavator, which is equal to 40° at a slope height of 40 m, was established. The dependence of the resulting slope angle of on the re-excavation coefficient of the mining rock mass was established. This makes it possible to assert that when this angle is increased the re-excavation rate will decrease. It was established that at the applying technological scheme with a forward trench in the conditions of Vilnohirsk MMP, the coefficient of overburden re-excavation will be k = 0.09. Practical value. A technological scheme for the development of an advanced overburden bench by the bucket-wheel excavator with a forward trench allows increasing its developed bench height. This makes it possible to reduce the operational cost for overburden works by refuse from haulage mining system with dump trucks.\",\"PeriodicalId\":19101,\"journal\":{\"name\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/nvngu/2023-6/005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/nvngu/2023-6/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits
Purpose. To justify the parameters of the technological scheme of working out an advanced overburden bench by a bucket-wheel excavator, to reduce the cost of overburden work at Pit 7 of Vilnohirsk Mining and Metallurgical Plant. Methodology. Setting the parameters of the technological scheme of the bucket-wheel excavator was performed by the graphic-analytical method, which involves taking into account the technical characteristics of the mining machine, the physical and mechanical properties of the mining rocks and the stable slope angle of the advanced overburden bench. The substantiation of the effectiveness of application of the technological scheme with a forward trench was made by the technical and economic calculation of the specific costs on overburden works. Findings. The possibility of increasing the height of the overburden bench when using a technological scheme with a forward trench was evaluated. Reasonable parameters of the forward trench, in which the bucket-wheel excavator can develop a forward pit bench with a capacity of 40 m with a stable slope angle of 30°. This allows reducing the amount of mining haulage equipment and reducing overburden costs by up to 50 %. Originality. The minimum slope angle of the overburden slope at the maximum digging height of the ERShR-1600-40/7 excavator, which is equal to 40° at a slope height of 40 m, was established. The dependence of the resulting slope angle of on the re-excavation coefficient of the mining rock mass was established. This makes it possible to assert that when this angle is increased the re-excavation rate will decrease. It was established that at the applying technological scheme with a forward trench in the conditions of Vilnohirsk MMP, the coefficient of overburden re-excavation will be k = 0.09. Practical value. A technological scheme for the development of an advanced overburden bench by the bucket-wheel excavator with a forward trench allows increasing its developed bench height. This makes it possible to reduce the operational cost for overburden works by refuse from haulage mining system with dump trucks.