P. Shcherbakov, S. Tymchenko, S. Moldabayev, M. Amankulov, D. Babets
{"title":"露天矿钻孔和爆破优化控制的数学论证和信息工具创建","authors":"P. Shcherbakov, S. Tymchenko, S. Moldabayev, M. Amankulov, D. Babets","doi":"10.33271/nvngu/2023-6/031","DOIUrl":null,"url":null,"abstract":"Purpose. To establish the rationale for the informational infrastructure necessary for effectively managing drilling and blasting operations in open-pit mining of rock deposits. To define the distribution function of natural rock blocks within the mass they comprise. To ensure timely access to data regarding the strength, fracturing characteristics of geological formations in their initial state, as well as the particle size distribution of mined materials obtained post-explosion. Methodology. Statistical modeling techniques were employed to analyze the natural blockiness of rock masses. The approach involved utilizing the principle of measuring the dimensions of individual rock fragments through a transmitting television tube and differentiating the obtained results using electronic pulse circuits. Electronic circuits capable of implementing statistical dependencies derived for drilling machines and loading excavators were introduced. Findings. Electronic devices have been proposed for real-time determination of the dimensions of natural rock blocks along their visible surfaces, as well as for assessing the strength, fracturing characteristics of rocks within the mass, and the particle size distribution of the mined material obtained during drilling and blasting operations. Originality. The study has established the distribution function of natural rock fragments within a mass, serving as a prototype for the distribution function of visible rock fragments located on the sidewall of a slope. The theoretical developments of the proposed electronic devices are protected by patents. Practical value. The presented tools for obtaining real-time, objective information about the natural blockiness, strength, and fracturing characteristics of rock formations in their initial state (before blasting), as well as relationship of these indicators with the particle size distribution of mined material obtained through blasting. These a tangible opportunity to implement optimal management of the entire blasting process, which will enable the enhancement of the technical and economic performance of open-pit mining","PeriodicalId":19101,"journal":{"name":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical substantiation and creation of information tools for optimal control of drilling and blasting in open-pit mine\",\"authors\":\"P. Shcherbakov, S. Tymchenko, S. Moldabayev, M. Amankulov, D. Babets\",\"doi\":\"10.33271/nvngu/2023-6/031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. To establish the rationale for the informational infrastructure necessary for effectively managing drilling and blasting operations in open-pit mining of rock deposits. To define the distribution function of natural rock blocks within the mass they comprise. To ensure timely access to data regarding the strength, fracturing characteristics of geological formations in their initial state, as well as the particle size distribution of mined materials obtained post-explosion. Methodology. Statistical modeling techniques were employed to analyze the natural blockiness of rock masses. The approach involved utilizing the principle of measuring the dimensions of individual rock fragments through a transmitting television tube and differentiating the obtained results using electronic pulse circuits. Electronic circuits capable of implementing statistical dependencies derived for drilling machines and loading excavators were introduced. Findings. Electronic devices have been proposed for real-time determination of the dimensions of natural rock blocks along their visible surfaces, as well as for assessing the strength, fracturing characteristics of rocks within the mass, and the particle size distribution of the mined material obtained during drilling and blasting operations. Originality. The study has established the distribution function of natural rock fragments within a mass, serving as a prototype for the distribution function of visible rock fragments located on the sidewall of a slope. The theoretical developments of the proposed electronic devices are protected by patents. Practical value. The presented tools for obtaining real-time, objective information about the natural blockiness, strength, and fracturing characteristics of rock formations in their initial state (before blasting), as well as relationship of these indicators with the particle size distribution of mined material obtained through blasting. These a tangible opportunity to implement optimal management of the entire blasting process, which will enable the enhancement of the technical and economic performance of open-pit mining\",\"PeriodicalId\":19101,\"journal\":{\"name\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/nvngu/2023-6/031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/nvngu/2023-6/031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Mathematical substantiation and creation of information tools for optimal control of drilling and blasting in open-pit mine
Purpose. To establish the rationale for the informational infrastructure necessary for effectively managing drilling and blasting operations in open-pit mining of rock deposits. To define the distribution function of natural rock blocks within the mass they comprise. To ensure timely access to data regarding the strength, fracturing characteristics of geological formations in their initial state, as well as the particle size distribution of mined materials obtained post-explosion. Methodology. Statistical modeling techniques were employed to analyze the natural blockiness of rock masses. The approach involved utilizing the principle of measuring the dimensions of individual rock fragments through a transmitting television tube and differentiating the obtained results using electronic pulse circuits. Electronic circuits capable of implementing statistical dependencies derived for drilling machines and loading excavators were introduced. Findings. Electronic devices have been proposed for real-time determination of the dimensions of natural rock blocks along their visible surfaces, as well as for assessing the strength, fracturing characteristics of rocks within the mass, and the particle size distribution of the mined material obtained during drilling and blasting operations. Originality. The study has established the distribution function of natural rock fragments within a mass, serving as a prototype for the distribution function of visible rock fragments located on the sidewall of a slope. The theoretical developments of the proposed electronic devices are protected by patents. Practical value. The presented tools for obtaining real-time, objective information about the natural blockiness, strength, and fracturing characteristics of rock formations in their initial state (before blasting), as well as relationship of these indicators with the particle size distribution of mined material obtained through blasting. These a tangible opportunity to implement optimal management of the entire blasting process, which will enable the enhancement of the technical and economic performance of open-pit mining