金融领域的数据科学:挑战与机遇

AI Pub Date : 2023-12-22 DOI:10.3390/ai5010004
Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang
{"title":"金融领域的数据科学:挑战与机遇","authors":"Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang","doi":"10.3390/ai5010004","DOIUrl":null,"url":null,"abstract":"Data science has become increasingly popular due to emerging technologies, including generative AI, big data, deep learning, etc. It can provide insights from data that are hard to determine from a human perspective. Data science in finance helps to provide more personal and safer experiences for customers and develop cutting-edge solutions for a company. This paper surveys the challenges and opportunities in applying data science to finance. It provides a state-of-the-art review of financial technologies, algorithmic trading, and fraud detection. Also, the paper identifies two research topics. One is how to use generative AI in algorithmic trading. The other is how to apply it to fraud detection. Last but not least, the paper discusses the challenges posed by generative AI, such as the ethical considerations, potential biases, and data security.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Science in Finance: Challenges and Opportunities\",\"authors\":\"Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang\",\"doi\":\"10.3390/ai5010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data science has become increasingly popular due to emerging technologies, including generative AI, big data, deep learning, etc. It can provide insights from data that are hard to determine from a human perspective. Data science in finance helps to provide more personal and safer experiences for customers and develop cutting-edge solutions for a company. This paper surveys the challenges and opportunities in applying data science to finance. It provides a state-of-the-art review of financial technologies, algorithmic trading, and fraud detection. Also, the paper identifies two research topics. One is how to use generative AI in algorithmic trading. The other is how to apply it to fraud detection. Last but not least, the paper discusses the challenges posed by generative AI, such as the ethical considerations, potential biases, and data security.\",\"PeriodicalId\":503525,\"journal\":{\"name\":\"AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ai5010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于包括生成式人工智能、大数据、深度学习等在内的新兴技术的出现,数据科学变得越来越流行。它可以从数据中提供从人类角度难以确定的见解。金融领域的数据科学有助于为客户提供更个性化、更安全的体验,并为公司开发最前沿的解决方案。本文探讨了将数据科学应用于金融业所面临的挑战和机遇。它对金融技术、算法交易和欺诈检测进行了最新回顾。此外,本文还确定了两个研究课题。一个是如何在算法交易中使用生成式人工智能。另一个是如何将其应用于欺诈检测。最后,本文还讨论了生成式人工智能带来的挑战,如伦理考虑、潜在偏见和数据安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Science in Finance: Challenges and Opportunities
Data science has become increasingly popular due to emerging technologies, including generative AI, big data, deep learning, etc. It can provide insights from data that are hard to determine from a human perspective. Data science in finance helps to provide more personal and safer experiences for customers and develop cutting-edge solutions for a company. This paper surveys the challenges and opportunities in applying data science to finance. It provides a state-of-the-art review of financial technologies, algorithmic trading, and fraud detection. Also, the paper identifies two research topics. One is how to use generative AI in algorithmic trading. The other is how to apply it to fraud detection. Last but not least, the paper discusses the challenges posed by generative AI, such as the ethical considerations, potential biases, and data security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI
AI
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances in 3D Object Detection for Self-Driving Vehicles: A Survey A Model for Feature Selection with Binary Particle Swarm Optimisation and Synthetic Features Dynamic Programming-Based White Box Adversarial Attack for Deep Neural Networks Computer Vision for Safety Management in the Steel Industry Optimization Strategies for Atari Game Environments: Integrating Snake Optimization Algorithm and Energy Valley Optimization in Reinforcement Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1