探索用于低资源文本抄袭检测的注意力连体 LSTM

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2023-12-18 DOI:10.1162/dint_a_00242
Wei Bao, Jian Dong, Yang Xu, Yuanyuan Yang, Xiaoke Qi
{"title":"探索用于低资源文本抄袭检测的注意力连体 LSTM","authors":"Wei Bao, Jian Dong, Yang Xu, Yuanyuan Yang, Xiaoke Qi","doi":"10.1162/dint_a_00242","DOIUrl":null,"url":null,"abstract":"Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training. This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts, particularly in the realm of semantic rewriting and translation-based plagiarism detection. In this paper, we present an enhanced attentive Siamese Long Short-Term Memory (LSTM) network designed for Tibetan-Chinese plagiarism detection. Our approach begins with the introduction of translation-based data augmentation, aimed at expanding the bilingual training dataset. Subsequently, we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency. Finally, we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection. We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"49 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection\",\"authors\":\"Wei Bao, Jian Dong, Yang Xu, Yuanyuan Yang, Xiaoke Qi\",\"doi\":\"10.1162/dint_a_00242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training. This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts, particularly in the realm of semantic rewriting and translation-based plagiarism detection. In this paper, we present an enhanced attentive Siamese Long Short-Term Memory (LSTM) network designed for Tibetan-Chinese plagiarism detection. Our approach begins with the introduction of translation-based data augmentation, aimed at expanding the bilingual training dataset. Subsequently, we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency. Finally, we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection. We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"49 \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00242\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00242","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于用于训练的标注数据有限,低资源文本抄袭检测面临着巨大挑战。这项任务需要开发能够识别文本异同的复杂算法,尤其是在语义改写和基于翻译的抄袭检测领域。在本文中,我们介绍了一种专为藏汉剽窃检测而设计的增强型殷勤暹罗长短期记忆(LSTM)网络。我们的方法首先引入了基于翻译的数据增强,旨在扩展双语训练数据集。随后,我们提出了一种利用抽象文档向量的预检测方法,以提高检测效率。最后,我们介绍了一种专为藏汉剽窃检测量身定制的改进型 Siamese LSTM 网络。我们进行了全面的实验,以展示我们提出的抄袭检测框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training. This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts, particularly in the realm of semantic rewriting and translation-based plagiarism detection. In this paper, we present an enhanced attentive Siamese Long Short-Term Memory (LSTM) network designed for Tibetan-Chinese plagiarism detection. Our approach begins with the introduction of translation-based data augmentation, aimed at expanding the bilingual training dataset. Subsequently, we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency. Finally, we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection. We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1