{"title":"利用模式决策树进行可解释的土地覆被分类","authors":"G. Pagliarini, G. Sciavicco","doi":"10.1080/22797254.2023.2262738","DOIUrl":null,"url":null,"abstract":"ABSTRACT Land cover classification (LCC) refers to the task of classifying each pixel in satellite/aerial imagery by predicting a label carrying information about its nature. Despite the importance of having transparent, symbolic decision models, in the recent literature, LCC has been mainly approached with black-box functional models, that are able to leverage the spatial dimensions within the data. In this article, we argue that standard symbolic decision models can be extended to perform a form of spatial reasoning that is adequate for LCC. We propose a generalization of a classical decision tree learning model, based on replacing propositional logic with a modal spatial logic, and provide a CART-like learning algorithm for it. We evaluate its performance at five different LCC tasks, showing that this technique leads to classification models whose performances are superior to those of their propositional counterpart, and at least comparable with those of non-symbolic ones. Ultimately, we show that spatial decision trees and random forests are able to extract complex, but interpretable spatial patterns.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"156 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable land cover classification with modal decision trees\",\"authors\":\"G. Pagliarini, G. Sciavicco\",\"doi\":\"10.1080/22797254.2023.2262738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Land cover classification (LCC) refers to the task of classifying each pixel in satellite/aerial imagery by predicting a label carrying information about its nature. Despite the importance of having transparent, symbolic decision models, in the recent literature, LCC has been mainly approached with black-box functional models, that are able to leverage the spatial dimensions within the data. In this article, we argue that standard symbolic decision models can be extended to perform a form of spatial reasoning that is adequate for LCC. We propose a generalization of a classical decision tree learning model, based on replacing propositional logic with a modal spatial logic, and provide a CART-like learning algorithm for it. We evaluate its performance at five different LCC tasks, showing that this technique leads to classification models whose performances are superior to those of their propositional counterpart, and at least comparable with those of non-symbolic ones. Ultimately, we show that spatial decision trees and random forests are able to extract complex, but interpretable spatial patterns.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"156 \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2023.2262738\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2262738","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Interpretable land cover classification with modal decision trees
ABSTRACT Land cover classification (LCC) refers to the task of classifying each pixel in satellite/aerial imagery by predicting a label carrying information about its nature. Despite the importance of having transparent, symbolic decision models, in the recent literature, LCC has been mainly approached with black-box functional models, that are able to leverage the spatial dimensions within the data. In this article, we argue that standard symbolic decision models can be extended to perform a form of spatial reasoning that is adequate for LCC. We propose a generalization of a classical decision tree learning model, based on replacing propositional logic with a modal spatial logic, and provide a CART-like learning algorithm for it. We evaluate its performance at five different LCC tasks, showing that this technique leads to classification models whose performances are superior to those of their propositional counterpart, and at least comparable with those of non-symbolic ones. Ultimately, we show that spatial decision trees and random forests are able to extract complex, but interpretable spatial patterns.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.