通过整合图像感知深度学习方法加强空间转录组学分析

Jiarong Song, Josh Lamstein, Vivek Gopal Ramaswamy, Michelle Webb, Gabriel Zada, Steven Finkbeiner, David W. Craig
{"title":"通过整合图像感知深度学习方法加强空间转录组学分析","authors":"Jiarong Song, Josh Lamstein, Vivek Gopal Ramaswamy, Michelle Webb, Gabriel Zada, Steven Finkbeiner, David W. Craig","doi":"10.1142/9789811286421_0035","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics (ST) represents a pivotal advancement in biomedical research, enabling the transcriptional profiling of cells within their morphological context and providing a pivotal tool for understanding spatial heterogeneity in cancer tissues. However, current analytical approaches, akin to single-cell analysis, largely depend on gene expression, underutilizing the rich morphological information inherent in the tissue. We present a novel method integrating spatial transcriptomics and histopathological image data to better capture biologically meaningful patterns in patient data, focusing on aggressive cancer types such as glioblastoma and triple-negative breast cancer. We used a ResNet-based deep learning model to extract key morphological features from high-resolution whole-slide histology images. Spot-level PCA-reduced vectors of both the ResNet-50 analysis of the histological image and the spatial gene expression data were used in Louvain clustering to enable image-aware feature discovery. Assessment of features from image-aware clustering successfully pinpointed key biological features identified by manual histopathology, such as for regions of fibrosis and necrosis, as well as improved edge definition in EGFR-rich areas. Importantly, our combinatorial approach revealed crucial characteristics seen in histopathology that gene-expression-only analysis had missed.Supplemental Material: https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf.","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"49 21","pages":"450-463"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Spatial Transcriptomics Analysis by Integrating Image-Aware Deep Learning Methods.\",\"authors\":\"Jiarong Song, Josh Lamstein, Vivek Gopal Ramaswamy, Michelle Webb, Gabriel Zada, Steven Finkbeiner, David W. Craig\",\"doi\":\"10.1142/9789811286421_0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial transcriptomics (ST) represents a pivotal advancement in biomedical research, enabling the transcriptional profiling of cells within their morphological context and providing a pivotal tool for understanding spatial heterogeneity in cancer tissues. However, current analytical approaches, akin to single-cell analysis, largely depend on gene expression, underutilizing the rich morphological information inherent in the tissue. We present a novel method integrating spatial transcriptomics and histopathological image data to better capture biologically meaningful patterns in patient data, focusing on aggressive cancer types such as glioblastoma and triple-negative breast cancer. We used a ResNet-based deep learning model to extract key morphological features from high-resolution whole-slide histology images. Spot-level PCA-reduced vectors of both the ResNet-50 analysis of the histological image and the spatial gene expression data were used in Louvain clustering to enable image-aware feature discovery. Assessment of features from image-aware clustering successfully pinpointed key biological features identified by manual histopathology, such as for regions of fibrosis and necrosis, as well as improved edge definition in EGFR-rich areas. Importantly, our combinatorial approach revealed crucial characteristics seen in histopathology that gene-expression-only analysis had missed.Supplemental Material: https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf.\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"49 21\",\"pages\":\"450-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811286421_0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811286421_0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学(ST)是生物医学研究领域的一项重要进展,它能在细胞形态学背景下对细胞进行转录剖析,为了解癌症组织的空间异质性提供了重要工具。然而,目前类似单细胞分析的分析方法主要依赖于基因表达,对组织中固有的丰富形态学信息利用不足。我们提出了一种整合空间转录组学和组织病理学图像数据的新方法,以更好地捕捉患者数据中具有生物学意义的模式,重点关注侵袭性癌症类型,如胶质母细胞瘤和三阴性乳腺癌。我们使用基于 ResNet 的深度学习模型从高分辨率全切片组织学图像中提取关键形态学特征。对组织学图像的 ResNet-50 分析和空间基因表达数据的点级 PCA 还原向量被用于卢万聚类,以实现图像感知特征发现。通过图像感知聚类对特征进行评估,成功确定了人工组织病理学确定的关键生物学特征,如纤维化和坏死区域,以及表皮生长因子受体富集区域的边缘定义。重要的是,我们的组合方法揭示了组织病理学中的关键特征,而仅有基因表达的分析却忽略了这些特征。补充材料:https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Spatial Transcriptomics Analysis by Integrating Image-Aware Deep Learning Methods.
Spatial transcriptomics (ST) represents a pivotal advancement in biomedical research, enabling the transcriptional profiling of cells within their morphological context and providing a pivotal tool for understanding spatial heterogeneity in cancer tissues. However, current analytical approaches, akin to single-cell analysis, largely depend on gene expression, underutilizing the rich morphological information inherent in the tissue. We present a novel method integrating spatial transcriptomics and histopathological image data to better capture biologically meaningful patterns in patient data, focusing on aggressive cancer types such as glioblastoma and triple-negative breast cancer. We used a ResNet-based deep learning model to extract key morphological features from high-resolution whole-slide histology images. Spot-level PCA-reduced vectors of both the ResNet-50 analysis of the histological image and the spatial gene expression data were used in Louvain clustering to enable image-aware feature discovery. Assessment of features from image-aware clustering successfully pinpointed key biological features identified by manual histopathology, such as for regions of fibrosis and necrosis, as well as improved edge definition in EGFR-rich areas. Importantly, our combinatorial approach revealed crucial characteristics seen in histopathology that gene-expression-only analysis had missed.Supplemental Material: https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1