衡量用于优化小麦生产力预测模型的监督机器学习算法的性能:比较研究

Malik Muhammad Hussain, Farrukh Shehzad, Muhammad Islam, Ashique Ali Chohan, Rashid Ahmed, H. M. Muddasar Jamil Shera
{"title":"衡量用于优化小麦生产力预测模型的监督机器学习算法的性能:比较研究","authors":"Malik Muhammad Hussain, Farrukh Shehzad, Muhammad Islam, Ashique Ali Chohan, Rashid Ahmed, H. M. Muddasar Jamil Shera","doi":"10.53560/ppasa(60-4)820","DOIUrl":null,"url":null,"abstract":"The issue of precise crop prediction gained worldwide attention in the midst of food security concerns. In this study, the efficacies of different machine learning (ML) algorithms, i.e., multiple linear regression (MLR), decision tree regression (DTR), random forest regression (RFR), and support vector regression (SVR) are integrated to predict wheat productivity. The performances of ML algorithms are then measured to get the optimized model. The updated dataset is collected from the Crop Reporting Service for various agronomical constraints. Randomized data partitions, hyper-parametric tuning, complexity analysis, cross-validation measures, learning curves, evaluation metrics and prediction errors are used to get the optimized model. ML model is applied using 75% training dataset and 25% testing datasets. RFR achieved the highest R2 value of 0.90 for the training model, followed by DTR, MLR, and SVR. In the testing model, RFR also achieved an R2 value of 0.74, followed by MLR, DTR, and SVR. The lowest prediction error (P.E) is found for the RFR, followed by DTR, MLR, and SVR. K-Fold cross-validation measures also depict that RFR is an optimized model when compared with DTR, MLR and SVR.","PeriodicalId":509771,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Performance of Supervised Machine Learning Algorithms for Optimizing Wheat Productivity Prediction Models: A Comparative Study\",\"authors\":\"Malik Muhammad Hussain, Farrukh Shehzad, Muhammad Islam, Ashique Ali Chohan, Rashid Ahmed, H. M. Muddasar Jamil Shera\",\"doi\":\"10.53560/ppasa(60-4)820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of precise crop prediction gained worldwide attention in the midst of food security concerns. In this study, the efficacies of different machine learning (ML) algorithms, i.e., multiple linear regression (MLR), decision tree regression (DTR), random forest regression (RFR), and support vector regression (SVR) are integrated to predict wheat productivity. The performances of ML algorithms are then measured to get the optimized model. The updated dataset is collected from the Crop Reporting Service for various agronomical constraints. Randomized data partitions, hyper-parametric tuning, complexity analysis, cross-validation measures, learning curves, evaluation metrics and prediction errors are used to get the optimized model. ML model is applied using 75% training dataset and 25% testing datasets. RFR achieved the highest R2 value of 0.90 for the training model, followed by DTR, MLR, and SVR. In the testing model, RFR also achieved an R2 value of 0.74, followed by MLR, DTR, and SVR. The lowest prediction error (P.E) is found for the RFR, followed by DTR, MLR, and SVR. K-Fold cross-validation measures also depict that RFR is an optimized model when compared with DTR, MLR and SVR.\",\"PeriodicalId\":509771,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(60-4)820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(60-4)820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在粮食安全问题上,作物精确预测问题受到了全世界的关注。在本研究中,综合使用了不同的机器学习(ML)算法,即多元线性回归(MLR)、决策树回归(DTR)、随机森林回归(RFR)和支持向量回归(SVR)来预测小麦的生产力。然后测量 ML 算法的性能,以获得优化模型。更新的数据集是从作物报告服务中收集的各种农艺约束条件。使用随机数据分区、超参数调整、复杂性分析、交叉验证措施、学习曲线、评价指标和预测误差来获得优化模型。ML 模型使用 75% 的训练数据集和 25% 的测试数据集。在训练模型中,RFR 的 R2 值最高,达到 0.90,其次是 DTR、MLR 和 SVR。在测试模型中,RFR 的 R2 值也达到了 0.74,其次是 MLR、DTR 和 SVR。RFR 的预测误差(P.E)最小,其次是 DTR、MLR 和 SVR。K-Fold 交叉验证测量结果也表明,与 DTR、MLR 和 SVR 相比,RFR 是一个最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring the Performance of Supervised Machine Learning Algorithms for Optimizing Wheat Productivity Prediction Models: A Comparative Study
The issue of precise crop prediction gained worldwide attention in the midst of food security concerns. In this study, the efficacies of different machine learning (ML) algorithms, i.e., multiple linear regression (MLR), decision tree regression (DTR), random forest regression (RFR), and support vector regression (SVR) are integrated to predict wheat productivity. The performances of ML algorithms are then measured to get the optimized model. The updated dataset is collected from the Crop Reporting Service for various agronomical constraints. Randomized data partitions, hyper-parametric tuning, complexity analysis, cross-validation measures, learning curves, evaluation metrics and prediction errors are used to get the optimized model. ML model is applied using 75% training dataset and 25% testing datasets. RFR achieved the highest R2 value of 0.90 for the training model, followed by DTR, MLR, and SVR. In the testing model, RFR also achieved an R2 value of 0.74, followed by MLR, DTR, and SVR. The lowest prediction error (P.E) is found for the RFR, followed by DTR, MLR, and SVR. K-Fold cross-validation measures also depict that RFR is an optimized model when compared with DTR, MLR and SVR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Solution for Cylindrical Shell of Permeable Material in Fractional Dimensional Space A Statistical Survey on the Socioeconomic and Demographic Livelihood of Brick Kiln Workers: A Case Study of Bahawalpur District, Punjab, Pakistan Enhancing Efficiency of Solar Heater Box with Linear Actuator for Maximizing Solarization Measuring the Performance of Supervised Machine Learning Algorithms for Optimizing Wheat Productivity Prediction Models: A Comparative Study New Numerical Approach to Calculate Microstates of Equivalent and Non-Equivalent Electrons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1