利用模糊聚类优化异构雾-雾-物联网网络的能源管理

Salah Eddine Essalhi, Mohamed Janati Idrissi, Mohammed Raiss El Fenni, H. Chafnaji
{"title":"利用模糊聚类优化异构雾-雾-物联网网络的能源管理","authors":"Salah Eddine Essalhi, Mohamed Janati Idrissi, Mohammed Raiss El Fenni, H. Chafnaji","doi":"10.1109/CommNet60167.2023.10365284","DOIUrl":null,"url":null,"abstract":"The rapid expansion of the Internet of Things (IoT) has led to an era dominated by diverse networks, with Mist and Fog computing becoming crucial for closer-to-device data processing. Despite the advantages, the surge of data from numerous devices raises challenges in optimizing system longevity, throughput, and latency. Most past research in Mist-IoT did not fully account for factors like residual energy, device location, workload capacity, butter size, and communication frequency, leading to high energy consumption during data exchanges between IoT and Fog systems. This study aims to address these factors for improved energy efficiency, especially with increasing data volume. It introduces a new approach using a Takagi-Sugeno-Kang (TSK) Type 2 Fuzzy Inference within a Fog-Mist-IoT architecture for smarter resource management during communication and task offloading in IoT ecosystem. Simulation results confirm its effectiveness.","PeriodicalId":505542,"journal":{"name":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"192 6","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Energy Management with Fuzzy Clustering for Heterogeneous Fog-Mist-IoT Networks\",\"authors\":\"Salah Eddine Essalhi, Mohamed Janati Idrissi, Mohammed Raiss El Fenni, H. Chafnaji\",\"doi\":\"10.1109/CommNet60167.2023.10365284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid expansion of the Internet of Things (IoT) has led to an era dominated by diverse networks, with Mist and Fog computing becoming crucial for closer-to-device data processing. Despite the advantages, the surge of data from numerous devices raises challenges in optimizing system longevity, throughput, and latency. Most past research in Mist-IoT did not fully account for factors like residual energy, device location, workload capacity, butter size, and communication frequency, leading to high energy consumption during data exchanges between IoT and Fog systems. This study aims to address these factors for improved energy efficiency, especially with increasing data volume. It introduces a new approach using a Takagi-Sugeno-Kang (TSK) Type 2 Fuzzy Inference within a Fog-Mist-IoT architecture for smarter resource management during communication and task offloading in IoT ecosystem. Simulation results confirm its effectiveness.\",\"PeriodicalId\":505542,\"journal\":{\"name\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"volume\":\"192 6\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CommNet60167.2023.10365284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet60167.2023.10365284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的快速发展导致了一个由多样化网络主导的时代,而迷雾和雾计算对于近距离处理设备数据至关重要。尽管有这些优势,但来自众多设备的数据激增给优化系统寿命、吞吐量和延迟带来了挑战。过去对 Mist-IoT 的研究大多没有充分考虑剩余能量、设备位置、工作负载能力、黄油大小和通信频率等因素,导致物联网和雾系统之间的数据交换能耗过高。本研究旨在解决这些因素,以提高能源效率,尤其是在数据量不断增加的情况下。它介绍了一种在 Fog-Mist-IoT 架构中使用 Takagi-Sugeno-Kang (TSK) 2 型模糊推理的新方法,用于在物联网生态系统中的通信和任务卸载期间进行更智能的资源管理。仿真结果证实了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Energy Management with Fuzzy Clustering for Heterogeneous Fog-Mist-IoT Networks
The rapid expansion of the Internet of Things (IoT) has led to an era dominated by diverse networks, with Mist and Fog computing becoming crucial for closer-to-device data processing. Despite the advantages, the surge of data from numerous devices raises challenges in optimizing system longevity, throughput, and latency. Most past research in Mist-IoT did not fully account for factors like residual energy, device location, workload capacity, butter size, and communication frequency, leading to high energy consumption during data exchanges between IoT and Fog systems. This study aims to address these factors for improved energy efficiency, especially with increasing data volume. It introduces a new approach using a Takagi-Sugeno-Kang (TSK) Type 2 Fuzzy Inference within a Fog-Mist-IoT architecture for smarter resource management during communication and task offloading in IoT ecosystem. Simulation results confirm its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum codes over Fq from α+βu+γv+δuv+ηu2+θv2+λu2v+μuv2+νu2v2- constacyclic codes A New IoT Power-Limited Wireless Sensor Networks Routing Protocol Utilizing Computational Intelligence CommNet 2023 Cover Page Efficient Brain Tumor Classification on Resource-Constrained Devices Using Stacking Ensemble and RadImageNet Pretrained Models David and Goliath: Asymmetric Advantage in MIoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1