{"title":"桔梗中的生物碱与血清素转运体(sert)、去甲肾上腺素转运体(net)和单胺氧化酶(mao)的分子对接研究","authors":"Dandi Irawan, Bambang Wijianto, Harianto Ih","doi":"10.20473/jkr.v8i2.50785","DOIUrl":null,"url":null,"abstract":"Kratom (Mitragyna speciosa Korth) is a tropical plant originating from Southeast Asia that predominantly contains alkaloid compounds and can potentially maintain levels of monoamine compounds in the body to treat depression. The study aimed to examine the potential of 8 alkaloid compounds in kratom as antidepressants towards four target proteins: Serotonin Transporter (SERT), Dopamine Transporter (DOPAT), Leucine Transporter (LEUT), and Monoamine Oxidase (MAO) via molecular docking. The Pyrx program is used with exhaustiveness 106 as the protocol, and the grid is adapted to the active site of each receptor. The affinity values of the alkaloid compounds in kratom are mitragynine, 7-hydroxy mitragynine, speciociliatine, paynantheine, speciogynine, corynantheidine, mitraciliatine, and 9-hydroxycorynantheidine, for MAO were -7.1, -6.1, -5.7, -6.7, -5.7, -7.7, -5.7, and -5.7 kcal/ mole. All compounds bind to amino acid residues in the target protein through hydrogen and pi (π) bonds. All the tested alkaloid compounds have the potential to be re-uptake inhibitors SERT, DOPAT, LEUT, and Monoamine Oxidase (MAO).","PeriodicalId":502957,"journal":{"name":"Jurnal Kimia Riset","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY MOLECULES DOCKING OF ALKALOIDS IN KRATOM ON SEROTONIN TRANSPORTER (SERT), NOREPINEPHRINE TRANSPORTER (NET), AND MONOAMINE OXIDASE (MAO)\",\"authors\":\"Dandi Irawan, Bambang Wijianto, Harianto Ih\",\"doi\":\"10.20473/jkr.v8i2.50785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kratom (Mitragyna speciosa Korth) is a tropical plant originating from Southeast Asia that predominantly contains alkaloid compounds and can potentially maintain levels of monoamine compounds in the body to treat depression. The study aimed to examine the potential of 8 alkaloid compounds in kratom as antidepressants towards four target proteins: Serotonin Transporter (SERT), Dopamine Transporter (DOPAT), Leucine Transporter (LEUT), and Monoamine Oxidase (MAO) via molecular docking. The Pyrx program is used with exhaustiveness 106 as the protocol, and the grid is adapted to the active site of each receptor. The affinity values of the alkaloid compounds in kratom are mitragynine, 7-hydroxy mitragynine, speciociliatine, paynantheine, speciogynine, corynantheidine, mitraciliatine, and 9-hydroxycorynantheidine, for MAO were -7.1, -6.1, -5.7, -6.7, -5.7, -7.7, -5.7, and -5.7 kcal/ mole. All compounds bind to amino acid residues in the target protein through hydrogen and pi (π) bonds. All the tested alkaloid compounds have the potential to be re-uptake inhibitors SERT, DOPAT, LEUT, and Monoamine Oxidase (MAO).\",\"PeriodicalId\":502957,\"journal\":{\"name\":\"Jurnal Kimia Riset\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Riset\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/jkr.v8i2.50785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Riset","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jkr.v8i2.50785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STUDY MOLECULES DOCKING OF ALKALOIDS IN KRATOM ON SEROTONIN TRANSPORTER (SERT), NOREPINEPHRINE TRANSPORTER (NET), AND MONOAMINE OXIDASE (MAO)
Kratom (Mitragyna speciosa Korth) is a tropical plant originating from Southeast Asia that predominantly contains alkaloid compounds and can potentially maintain levels of monoamine compounds in the body to treat depression. The study aimed to examine the potential of 8 alkaloid compounds in kratom as antidepressants towards four target proteins: Serotonin Transporter (SERT), Dopamine Transporter (DOPAT), Leucine Transporter (LEUT), and Monoamine Oxidase (MAO) via molecular docking. The Pyrx program is used with exhaustiveness 106 as the protocol, and the grid is adapted to the active site of each receptor. The affinity values of the alkaloid compounds in kratom are mitragynine, 7-hydroxy mitragynine, speciociliatine, paynantheine, speciogynine, corynantheidine, mitraciliatine, and 9-hydroxycorynantheidine, for MAO were -7.1, -6.1, -5.7, -6.7, -5.7, -7.7, -5.7, and -5.7 kcal/ mole. All compounds bind to amino acid residues in the target protein through hydrogen and pi (π) bonds. All the tested alkaloid compounds have the potential to be re-uptake inhibitors SERT, DOPAT, LEUT, and Monoamine Oxidase (MAO).