Peijun Song , Jun Xu , Xinjie Liu , Zhi Zhang , Xinglong Rao , Ricardo P. Martinho , Qingjia Bao , Chaoyang Liu
{"title":"利用多个相似测量值对固态核磁共振波谱进行静态小波去噪","authors":"Peijun Song , Jun Xu , Xinjie Liu , Zhi Zhang , Xinglong Rao , Ricardo P. Martinho , Qingjia Bao , Chaoyang Liu","doi":"10.1016/j.jmr.2023.107615","DOIUrl":null,"url":null,"abstract":"<div><p>Accumulating several scans of free induction decays is always needed to improve the signal-to-noise ratio of NMR spectra, especially for the low gyromagnetic ratio solid-state NMR. In this study, we present a new denoising approach based on the correlations between multiple similar NMR spectra. Contrary to the simple averaging of multiple scans or denoising the final averaged spectrum, we propose a Wavelet-based Denoising technique for Multiple Similar scans(WDMS). Firstly, the stationary wavelet transform is applied to decompose every spectrum into approximation coefficients and detail coefficients. Then, the detail coefficients are multiplied by weights calculated based on Pearson's correlation coefficient and structural similarity index between approximation coefficients of different spectra. Finally, the average of these detailed components is used to denoise the spectra. The proposed method is carried on the assumption that noise between multiple spectra is uncorrelated while peak signal information is similar between different spectra, thus preserving the possibility of applying further processing to the data. As a demonstration, the standard wavelet denoise is applied to the WDMS-processed spectra, achieving a further increase in the S/N ratio. We confirm the reliability of the denoising approach based on multiple scans on 1D/2D solid-state MAS/static NMR spectra. In addition, we also show that this method can be used to deal with a single Car-Purcell-Meiboom-Gill (CPMG) echo train.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"359 ","pages":"Article 107615"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary wavelet denoising of solid-state NMR spectra using multiple similar measurements\",\"authors\":\"Peijun Song , Jun Xu , Xinjie Liu , Zhi Zhang , Xinglong Rao , Ricardo P. Martinho , Qingjia Bao , Chaoyang Liu\",\"doi\":\"10.1016/j.jmr.2023.107615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accumulating several scans of free induction decays is always needed to improve the signal-to-noise ratio of NMR spectra, especially for the low gyromagnetic ratio solid-state NMR. In this study, we present a new denoising approach based on the correlations between multiple similar NMR spectra. Contrary to the simple averaging of multiple scans or denoising the final averaged spectrum, we propose a Wavelet-based Denoising technique for Multiple Similar scans(WDMS). Firstly, the stationary wavelet transform is applied to decompose every spectrum into approximation coefficients and detail coefficients. Then, the detail coefficients are multiplied by weights calculated based on Pearson's correlation coefficient and structural similarity index between approximation coefficients of different spectra. Finally, the average of these detailed components is used to denoise the spectra. The proposed method is carried on the assumption that noise between multiple spectra is uncorrelated while peak signal information is similar between different spectra, thus preserving the possibility of applying further processing to the data. As a demonstration, the standard wavelet denoise is applied to the WDMS-processed spectra, achieving a further increase in the S/N ratio. We confirm the reliability of the denoising approach based on multiple scans on 1D/2D solid-state MAS/static NMR spectra. In addition, we also show that this method can be used to deal with a single Car-Purcell-Meiboom-Gill (CPMG) echo train.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"359 \",\"pages\":\"Article 107615\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780723002501\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780723002501","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Stationary wavelet denoising of solid-state NMR spectra using multiple similar measurements
Accumulating several scans of free induction decays is always needed to improve the signal-to-noise ratio of NMR spectra, especially for the low gyromagnetic ratio solid-state NMR. In this study, we present a new denoising approach based on the correlations between multiple similar NMR spectra. Contrary to the simple averaging of multiple scans or denoising the final averaged spectrum, we propose a Wavelet-based Denoising technique for Multiple Similar scans(WDMS). Firstly, the stationary wavelet transform is applied to decompose every spectrum into approximation coefficients and detail coefficients. Then, the detail coefficients are multiplied by weights calculated based on Pearson's correlation coefficient and structural similarity index between approximation coefficients of different spectra. Finally, the average of these detailed components is used to denoise the spectra. The proposed method is carried on the assumption that noise between multiple spectra is uncorrelated while peak signal information is similar between different spectra, thus preserving the possibility of applying further processing to the data. As a demonstration, the standard wavelet denoise is applied to the WDMS-processed spectra, achieving a further increase in the S/N ratio. We confirm the reliability of the denoising approach based on multiple scans on 1D/2D solid-state MAS/static NMR spectra. In addition, we also show that this method can be used to deal with a single Car-Purcell-Meiboom-Gill (CPMG) echo train.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.