使用改进的 YOLOv5 模型检测日志农场中日志的体积

Xianqi Deng Xianqi Deng, Jianping Liu Xianqi Deng, Cheng Peng Jianping Liu, Yingfei Wang Cheng Peng
{"title":"使用改进的 YOLOv5 模型检测日志农场中日志的体积","authors":"Xianqi Deng Xianqi Deng, Jianping Liu Xianqi Deng, Cheng Peng Jianping Liu, Yingfei Wang Cheng Peng","doi":"10.53106/160792642023122407002","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new computer vision model called SE-YOLOv5-SPD for counting the number of log ends in large wood piles in log farms. This task traditionally requires a lot of manpower and previous computer vision methods struggle to detect logs in low pixels and small objects in images. Our model is based on the YOLOv5 model and incorporates the Squeeze-and-Excitation Networks (SENet) attention module and SPD-Conv (Space-to-Depth Convolution) module to improve accuracy. We also compare the performance of the SE attention module and SPD-Conv module to the CBAM attention module and Focus module using the SE-YOLOv5-SPD model. Results show that the SE-YOLOv5-SPD model can achieve excellent results of 0.652 in mAP50:95, 0.912 in mAP50, 0.968 in Precision, and 0.864 in Recall in a low-resolution environment with interference, which is significantly better than other models. Our findings indicate that the SE-YOLOv5-SPD model is a promising solution for counting the number of log ends in wood piles.","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"42 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Improved YOLOv5 Model to Detect Volume for Logs in Log Farms\",\"authors\":\"Xianqi Deng Xianqi Deng, Jianping Liu Xianqi Deng, Cheng Peng Jianping Liu, Yingfei Wang Cheng Peng\",\"doi\":\"10.53106/160792642023122407002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new computer vision model called SE-YOLOv5-SPD for counting the number of log ends in large wood piles in log farms. This task traditionally requires a lot of manpower and previous computer vision methods struggle to detect logs in low pixels and small objects in images. Our model is based on the YOLOv5 model and incorporates the Squeeze-and-Excitation Networks (SENet) attention module and SPD-Conv (Space-to-Depth Convolution) module to improve accuracy. We also compare the performance of the SE attention module and SPD-Conv module to the CBAM attention module and Focus module using the SE-YOLOv5-SPD model. Results show that the SE-YOLOv5-SPD model can achieve excellent results of 0.652 in mAP50:95, 0.912 in mAP50, 0.968 in Precision, and 0.864 in Recall in a low-resolution environment with interference, which is significantly better than other models. Our findings indicate that the SE-YOLOv5-SPD model is a promising solution for counting the number of log ends in wood piles.\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"42 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023122407002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023122407002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种名为 SE-YOLOv5-SPD 的新型计算机视觉模型,用于计算原木农场大型木材堆中的原木端头数量。这项任务传统上需要大量人力,而且以前的计算机视觉方法很难检测到图像中低像素和小物体中的原木。我们的模型以 YOLOv5 模型为基础,加入了挤压-激发网络(SENet)注意力模块和 SPD-Conv(空间-深度卷积)模块,以提高准确性。我们还比较了 SE 注意力模块和 SPD-Conv 模块与使用 SE-YOLOv5-SPD 模型的 CBAM 注意力模块和 Focus 模块的性能。结果表明,在有干扰的低分辨率环境中,SE-YOLOv5-SPD 模型的 mAP50:95 为 0.652,mAP50 为 0.912,精确度为 0.968,召回率为 0.864,明显优于其他模型。我们的研究结果表明,SE-YOLOv5-SPD 模型是计算木材堆中原木末端数量的一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Improved YOLOv5 Model to Detect Volume for Logs in Log Farms
In this paper, we propose a new computer vision model called SE-YOLOv5-SPD for counting the number of log ends in large wood piles in log farms. This task traditionally requires a lot of manpower and previous computer vision methods struggle to detect logs in low pixels and small objects in images. Our model is based on the YOLOv5 model and incorporates the Squeeze-and-Excitation Networks (SENet) attention module and SPD-Conv (Space-to-Depth Convolution) module to improve accuracy. We also compare the performance of the SE attention module and SPD-Conv module to the CBAM attention module and Focus module using the SE-YOLOv5-SPD model. Results show that the SE-YOLOv5-SPD model can achieve excellent results of 0.652 in mAP50:95, 0.912 in mAP50, 0.968 in Precision, and 0.864 in Recall in a low-resolution environment with interference, which is significantly better than other models. Our findings indicate that the SE-YOLOv5-SPD model is a promising solution for counting the number of log ends in wood piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1