{"title":"吸积盘内部区域形成的辐射压力对外部区域吸积流的影响","authors":"Hongsu Kim, Uicheol Jang","doi":"10.5140/jass.2023.40.4.247","DOIUrl":null,"url":null,"abstract":"Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates ( M ˙ ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.","PeriodicalId":44366,"journal":{"name":"Journal of Astronomy and Space Sciences","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Radiation Pressure Formed at the Inner Region of the Accretion Disk on the Accretion Flow in the Outer Region\",\"authors\":\"Hongsu Kim, Uicheol Jang\",\"doi\":\"10.5140/jass.2023.40.4.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates ( M ˙ ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.\",\"PeriodicalId\":44366,\"journal\":{\"name\":\"Journal of Astronomy and Space Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5140/jass.2023.40.4.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5140/jass.2023.40.4.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Effect of Radiation Pressure Formed at the Inner Region of the Accretion Disk on the Accretion Flow in the Outer Region
Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates ( M ˙ ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.
期刊介绍:
JASS aims for the promotion of global awareness and understanding of space science and related applications. Unlike other journals that focus either on space science or on space technologies, it intends to bridge the two communities of space science and technologies, by providing opportunities to exchange ideas and viewpoints in a single journal. Topics suitable for publication in JASS include researches in the following fields: space astronomy, solar physics, magnetospheric and ionospheric physics, cosmic ray, space weather, and planetary sciences; space instrumentation, satellite dynamics, geodesy, spacecraft control, and spacecraft navigation. However, the topics covered by JASS are not restricted to those mentioned above as the journal also encourages submission of research results in all other branches related to space science and technologies. Even though JASS was established on the heritage and achievements of the Korean space science community, it is now open to the worldwide community, while maintaining a high standard as a leading international journal. Hence, it solicits papers from the international community with a vision of global collaboration in the fields of space science and technologies.