Yuta Yoshikawa, Takayuki Okai, H. Oya, Minoru Yoshida, Md.Masudur Rahman
{"title":"基于带伪微分算子的小波变换的心电图 r 峰识别方法","authors":"Yuta Yoshikawa, Takayuki Okai, H. Oya, Minoru Yoshida, Md.Masudur Rahman","doi":"10.58190/icontas.2023.55","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a recognition method of R-peaks on electrocardiograms (ECGs) based on wavelet transform with pseudo-differential operators. It is well known that the accurate recognition of R-peaks is highly importance for diagnosis of cardiac diseases and autonomic ataxia. However, the existing results for detection of R-peaks are not always accurate and can have missed peaks or false. Difficulties in accurate R-peaks detection is caused by presence of various noises in ECGs and the physiological variability of the QRS complex. From the above, we propose a more flexible and adaptive recognition method of R-peaks. In order to develop the proposed detection method, noises, artifacts, and baseline variation in ECGs are firstly suppressed by using the low-pass/high-pass filters, moving average, and MaMeMi filter. Next, the time-frequency domain's energy distribution is computed by using wavelet transform with pseudo-differential operators. Furthermore, we introduce a time-series index, -Normalized Spectrum Index ( f^p-NSI) obtained by scalograms based on the wavelet transform with pseudo-differential operators. Finally, R-peaks are recognized by taking the threshold toward the results of f^p-NSI. In this paper, we present the proposed recognition method of R-peaks on ECGs, and the effectiveness (accuracy) of the proposed method is evaluated.","PeriodicalId":509439,"journal":{"name":"Proceedings of the International Conference on New Trends in Applied Sciences","volume":"108 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RECOGNITION METHOD OF R-PEAKS ON ELECTROCARDIOGRAMS BASED ON WAVELET TRANSFORM WITH PSEUDO-DIFFERENTIAL OPERATORS\",\"authors\":\"Yuta Yoshikawa, Takayuki Okai, H. Oya, Minoru Yoshida, Md.Masudur Rahman\",\"doi\":\"10.58190/icontas.2023.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a recognition method of R-peaks on electrocardiograms (ECGs) based on wavelet transform with pseudo-differential operators. It is well known that the accurate recognition of R-peaks is highly importance for diagnosis of cardiac diseases and autonomic ataxia. However, the existing results for detection of R-peaks are not always accurate and can have missed peaks or false. Difficulties in accurate R-peaks detection is caused by presence of various noises in ECGs and the physiological variability of the QRS complex. From the above, we propose a more flexible and adaptive recognition method of R-peaks. In order to develop the proposed detection method, noises, artifacts, and baseline variation in ECGs are firstly suppressed by using the low-pass/high-pass filters, moving average, and MaMeMi filter. Next, the time-frequency domain's energy distribution is computed by using wavelet transform with pseudo-differential operators. Furthermore, we introduce a time-series index, -Normalized Spectrum Index ( f^p-NSI) obtained by scalograms based on the wavelet transform with pseudo-differential operators. Finally, R-peaks are recognized by taking the threshold toward the results of f^p-NSI. In this paper, we present the proposed recognition method of R-peaks on ECGs, and the effectiveness (accuracy) of the proposed method is evaluated.\",\"PeriodicalId\":509439,\"journal\":{\"name\":\"Proceedings of the International Conference on New Trends in Applied Sciences\",\"volume\":\"108 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on New Trends in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58190/icontas.2023.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on New Trends in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58190/icontas.2023.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种基于小波变换和伪微分算子的心电图(ECG)R 峰识别方法。众所周知,准确识别 R 峰对于诊断心脏疾病和自主神经共济失调非常重要。然而,现有的 R 峰检测结果并不总是准确的,可能会出现漏峰或假峰。心电图中存在的各种噪声和 QRS 波群的生理变化是造成 R 峰难以准确检测的原因。综上所述,我们提出了一种更加灵活和自适应的 R 峰识别方法。为了开发所提出的检测方法,首先使用低通/高通滤波器、移动平均滤波器和 MaMeMi 滤波器抑制心电图中的噪声、伪像和基线变化。然后,使用带伪差分算子的小波变换计算时频域的能量分布。此外,我们还引入了一种时间序列指数--归一化频谱指数(f^p-NSI),该指数由基于伪微分算子的小波变换得到。最后,通过对 f^p-NSI 的结果取阈值来识别 R 峰。本文提出了在心电图上识别 R 峰的方法,并对该方法的有效性(准确性)进行了评估。
A RECOGNITION METHOD OF R-PEAKS ON ELECTROCARDIOGRAMS BASED ON WAVELET TRANSFORM WITH PSEUDO-DIFFERENTIAL OPERATORS
In this paper, we propose a recognition method of R-peaks on electrocardiograms (ECGs) based on wavelet transform with pseudo-differential operators. It is well known that the accurate recognition of R-peaks is highly importance for diagnosis of cardiac diseases and autonomic ataxia. However, the existing results for detection of R-peaks are not always accurate and can have missed peaks or false. Difficulties in accurate R-peaks detection is caused by presence of various noises in ECGs and the physiological variability of the QRS complex. From the above, we propose a more flexible and adaptive recognition method of R-peaks. In order to develop the proposed detection method, noises, artifacts, and baseline variation in ECGs are firstly suppressed by using the low-pass/high-pass filters, moving average, and MaMeMi filter. Next, the time-frequency domain's energy distribution is computed by using wavelet transform with pseudo-differential operators. Furthermore, we introduce a time-series index, -Normalized Spectrum Index ( f^p-NSI) obtained by scalograms based on the wavelet transform with pseudo-differential operators. Finally, R-peaks are recognized by taking the threshold toward the results of f^p-NSI. In this paper, we present the proposed recognition method of R-peaks on ECGs, and the effectiveness (accuracy) of the proposed method is evaluated.