{"title":"通过 InceptionV3 和 VGG19 提取特征,利用随机森林对杜鹃花叶进行分类","authors":"Elham Tahsin Yasin, Murat Koklu","doi":"10.58190/icontas.2023.48","DOIUrl":null,"url":null,"abstract":"An analysis of the \"Pudina Leaf Dataset: Freshness Analysis\" reveals distinct classes of dried, fresh, and spoiled mint leaves. Convolutional neural networks, InceptionV3 and VGG19, were used to extract features from the dataset using advanced image processing techniques. The classification task was then performed using a Random Forest machine learning algorithm. In this study, notable results were obtained, proving the effectiveness of the selected methodologies. Mint (Pudina) leaves were classified accurately using InceptionV3-extracted features at 94.8%, demonstrating robust performance in distinguishing freshness states. This deep learning architecture was further shown to be able to capture meaningful patterns within the dataset by utilizing VGG19-extracted features, resulting in an improved accuracy of 96.8%.","PeriodicalId":509439,"journal":{"name":"Proceedings of the International Conference on New Trends in Applied Sciences","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Random Forests for the Classification of Pudina Leaves through Feature Extraction with InceptionV3 and VGG19\",\"authors\":\"Elham Tahsin Yasin, Murat Koklu\",\"doi\":\"10.58190/icontas.2023.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis of the \\\"Pudina Leaf Dataset: Freshness Analysis\\\" reveals distinct classes of dried, fresh, and spoiled mint leaves. Convolutional neural networks, InceptionV3 and VGG19, were used to extract features from the dataset using advanced image processing techniques. The classification task was then performed using a Random Forest machine learning algorithm. In this study, notable results were obtained, proving the effectiveness of the selected methodologies. Mint (Pudina) leaves were classified accurately using InceptionV3-extracted features at 94.8%, demonstrating robust performance in distinguishing freshness states. This deep learning architecture was further shown to be able to capture meaningful patterns within the dataset by utilizing VGG19-extracted features, resulting in an improved accuracy of 96.8%.\",\"PeriodicalId\":509439,\"journal\":{\"name\":\"Proceedings of the International Conference on New Trends in Applied Sciences\",\"volume\":\" 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on New Trends in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58190/icontas.2023.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on New Trends in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58190/icontas.2023.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing Random Forests for the Classification of Pudina Leaves through Feature Extraction with InceptionV3 and VGG19
An analysis of the "Pudina Leaf Dataset: Freshness Analysis" reveals distinct classes of dried, fresh, and spoiled mint leaves. Convolutional neural networks, InceptionV3 and VGG19, were used to extract features from the dataset using advanced image processing techniques. The classification task was then performed using a Random Forest machine learning algorithm. In this study, notable results were obtained, proving the effectiveness of the selected methodologies. Mint (Pudina) leaves were classified accurately using InceptionV3-extracted features at 94.8%, demonstrating robust performance in distinguishing freshness states. This deep learning architecture was further shown to be able to capture meaningful patterns within the dataset by utilizing VGG19-extracted features, resulting in an improved accuracy of 96.8%.