Hanifeh Akbarian Kalehjahi, M. Kosari-Nasab, Mojtaba Amini, A. Movafeghi
{"title":"绿色微藻小球藻对五氧化二钒纳米颗粒的防御反应","authors":"Hanifeh Akbarian Kalehjahi, M. Kosari-Nasab, Mojtaba Amini, A. Movafeghi","doi":"10.26881/oahs-2023.4.06","DOIUrl":null,"url":null,"abstract":"Abstract Although vanadium-based nanomaterials have found extensive use in industry, their influence on ecosystems and living organisms is not yet well investigated. In this study, hydrothermal methods were utilized for the synthesis of vanadium pentoxide nanoparticles (V2O5 NPs). The gained NPs were characterized using XRD, FT-IR, EDS, DLS, SEM and TEM techniques. Subsequently, the toxic effects of V2O5 NPs on the model green microalgae Chlorella vulgaris were evaluated. According to the obtained results, V2O5 NPs caused a significant reduction in cell number and biomass production of algae in a dose and time dependent manner. Moreover, flow cytometric analysis confirmed a reduction in the quantity of living cells. Scanning electron microscopy showed plasmolysis and deformation of the cells after exposure to nanoparticles. The photosynthetic pigments and phenolics content exhibited a decrease in comparison with the control sample. Although, non-enzymatic antioxidant system in C. vulgaris displayed an average action, antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a dose dependent increasing trend. These intercellular reactions designated the activation of the antioxidant defense system in response to the induced oxidative stress by V2O5 NPs.","PeriodicalId":19407,"journal":{"name":"Oceanological and Hydrobiological Studies","volume":"80 11","pages":"446 - 460"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defense responses of the green microalgae Chlorella vulgaris to the vanadium pentoxide nanoparticles\",\"authors\":\"Hanifeh Akbarian Kalehjahi, M. Kosari-Nasab, Mojtaba Amini, A. Movafeghi\",\"doi\":\"10.26881/oahs-2023.4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although vanadium-based nanomaterials have found extensive use in industry, their influence on ecosystems and living organisms is not yet well investigated. In this study, hydrothermal methods were utilized for the synthesis of vanadium pentoxide nanoparticles (V2O5 NPs). The gained NPs were characterized using XRD, FT-IR, EDS, DLS, SEM and TEM techniques. Subsequently, the toxic effects of V2O5 NPs on the model green microalgae Chlorella vulgaris were evaluated. According to the obtained results, V2O5 NPs caused a significant reduction in cell number and biomass production of algae in a dose and time dependent manner. Moreover, flow cytometric analysis confirmed a reduction in the quantity of living cells. Scanning electron microscopy showed plasmolysis and deformation of the cells after exposure to nanoparticles. The photosynthetic pigments and phenolics content exhibited a decrease in comparison with the control sample. Although, non-enzymatic antioxidant system in C. vulgaris displayed an average action, antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a dose dependent increasing trend. These intercellular reactions designated the activation of the antioxidant defense system in response to the induced oxidative stress by V2O5 NPs.\",\"PeriodicalId\":19407,\"journal\":{\"name\":\"Oceanological and Hydrobiological Studies\",\"volume\":\"80 11\",\"pages\":\"446 - 460\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanological and Hydrobiological Studies\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.26881/oahs-2023.4.06\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanological and Hydrobiological Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.26881/oahs-2023.4.06","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Defense responses of the green microalgae Chlorella vulgaris to the vanadium pentoxide nanoparticles
Abstract Although vanadium-based nanomaterials have found extensive use in industry, their influence on ecosystems and living organisms is not yet well investigated. In this study, hydrothermal methods were utilized for the synthesis of vanadium pentoxide nanoparticles (V2O5 NPs). The gained NPs were characterized using XRD, FT-IR, EDS, DLS, SEM and TEM techniques. Subsequently, the toxic effects of V2O5 NPs on the model green microalgae Chlorella vulgaris were evaluated. According to the obtained results, V2O5 NPs caused a significant reduction in cell number and biomass production of algae in a dose and time dependent manner. Moreover, flow cytometric analysis confirmed a reduction in the quantity of living cells. Scanning electron microscopy showed plasmolysis and deformation of the cells after exposure to nanoparticles. The photosynthetic pigments and phenolics content exhibited a decrease in comparison with the control sample. Although, non-enzymatic antioxidant system in C. vulgaris displayed an average action, antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a dose dependent increasing trend. These intercellular reactions designated the activation of the antioxidant defense system in response to the induced oxidative stress by V2O5 NPs.
期刊介绍:
Oceanological and Hydrobiological Studies is an international journal published by the Institute of Oceanography, University of Gdańsk in Poland. The journal has 4 issues per year and contains papers on all aspects of the marine environment and hydrobiology. All manuscripts are reviewed by editors and independent experts. Based on the referees'' recommendations, the Editor will make a decision on whether to accept a contribution. All articles are published in English. The journal is open to all matters concerning the water environment, thus providing the readers with a wide spectrum of topics in every issue.