Ying Xie, Xiangmin Zhao, Wei Cai, Guoliang Qi, Zebing Wang, Yi Zhang, Yanhui Yang
{"title":"混合动力电动汽车永磁同步电机喷油管冷却结构的设计与优化","authors":"Ying Xie, Xiangmin Zhao, Wei Cai, Guoliang Qi, Zebing Wang, Yi Zhang, Yanhui Yang","doi":"10.1049/elp2.12393","DOIUrl":null,"url":null,"abstract":"<p>In recent years, with the continuous improvement of motor power density, oil cooling technology has been widely used in permanent magnet synchronous motors (PMSMs) for electric vehicles (EVs) as an efficient cooling method. A PMSM with a rated capacity of 53kW for hybrid electric vehicles (HEVs) is designed, and the motor is cooled by the oil injection pipe. In order to improve the heat dissipation efficiency of the end winding, the number of injection pipes and the structure of the nozzle are optimised, and a novel nozzle structure is proposed. By using the moving particle solution (MPS) method to simulate the fluid flow, the optimal cooling structure of the motor is determined. In addition, different from the equivalent winding model in the traditional temperature field simulation, a hairpin winding model that can more realistically reflect the geometry of the end winding is established. On this basis, the temperature field of the motor is simulated. It is verified that the cooling structure designed can effectively improve the thermal performance of the end winding.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12393","citationCount":"0","resultStr":"{\"title\":\"Design and optimisation of oil injection pipe cooling structure for permanent magnet synchronous motors in hybrid electric vehicles\",\"authors\":\"Ying Xie, Xiangmin Zhao, Wei Cai, Guoliang Qi, Zebing Wang, Yi Zhang, Yanhui Yang\",\"doi\":\"10.1049/elp2.12393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, with the continuous improvement of motor power density, oil cooling technology has been widely used in permanent magnet synchronous motors (PMSMs) for electric vehicles (EVs) as an efficient cooling method. A PMSM with a rated capacity of 53kW for hybrid electric vehicles (HEVs) is designed, and the motor is cooled by the oil injection pipe. In order to improve the heat dissipation efficiency of the end winding, the number of injection pipes and the structure of the nozzle are optimised, and a novel nozzle structure is proposed. By using the moving particle solution (MPS) method to simulate the fluid flow, the optimal cooling structure of the motor is determined. In addition, different from the equivalent winding model in the traditional temperature field simulation, a hairpin winding model that can more realistically reflect the geometry of the end winding is established. On this basis, the temperature field of the motor is simulated. It is verified that the cooling structure designed can effectively improve the thermal performance of the end winding.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12393\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and optimisation of oil injection pipe cooling structure for permanent magnet synchronous motors in hybrid electric vehicles
In recent years, with the continuous improvement of motor power density, oil cooling technology has been widely used in permanent magnet synchronous motors (PMSMs) for electric vehicles (EVs) as an efficient cooling method. A PMSM with a rated capacity of 53kW for hybrid electric vehicles (HEVs) is designed, and the motor is cooled by the oil injection pipe. In order to improve the heat dissipation efficiency of the end winding, the number of injection pipes and the structure of the nozzle are optimised, and a novel nozzle structure is proposed. By using the moving particle solution (MPS) method to simulate the fluid flow, the optimal cooling structure of the motor is determined. In addition, different from the equivalent winding model in the traditional temperature field simulation, a hairpin winding model that can more realistically reflect the geometry of the end winding is established. On this basis, the temperature field of the motor is simulated. It is verified that the cooling structure designed can effectively improve the thermal performance of the end winding.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.