H. Neupane, Prakash Khatri, Arun Devkota, N. Adhikari
{"title":"通过 Tc 和 Nb 杂质缺陷及水吸附实现 MoS2 单层的电子和磁性能","authors":"H. Neupane, Prakash Khatri, Arun Devkota, N. Adhikari","doi":"10.3126/bibechana.v20i3.57470","DOIUrl":null,"url":null,"abstract":"This study examined the effect of Tc & Nb impurity atoms on MoS2 (Tc-MoS2 & Nb-MoS2 ), and adsorption of water molecule on impurities defected MoS2 (Tc-W-MoS2 & Nb-W-MoS2) material from first-principles calculations. By the estimation of their ground state energy and binding energy, they are stable 2D materials. From band structure and density of states (DoS) calculations, Tc & Nbimpurities affect the nature of pristine MoS2. It is found that Tc-MoS2 has n-type & Nb-MoS2 has p-type semiconducting nature. Water interaction on Tc-MoS2 & Nb-MoS2 slightly changes the electronic properties and impacts the bandgap, which enhanced the electronic performance of material than that of pristine MoS2. The magnetic properties of Tc-MoS2, Nb-MoS2, Tc-W-MoS2, and Nb-W-MoS2 are analyzed and found to exhibit an uneven distribution of up-spin and down-spin states of electrons in the orbital of atoms near the Fermi level. It reflects that they have magnetic properties. The non-magnetic MoS2 material changes in to weak magnetic defected-MoS2 materials due to the presence of Tc, Nb and adsorbed water molecule. It means, impurity defects add to magnetic properties of pristine MoS2. Magnetic properties on defected MoS2 occurred due to the dominant contributions of spin states of 4d-orbital of Mo, Tc, Nb atoms, and 3p-orbital of S atoms in the structures. This study highlights the impact of Tc & Nb impurity atoms and adsorbed water molecule on impurities defected MoS2. The studied materials have potential applications in the fields of catalysis, nanoelectronics, biomedicine, and magnetic sensors on the basis of their electronic and magnetic properties.","PeriodicalId":8759,"journal":{"name":"Bibechana","volume":"59 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and magnetic performance of MoS2 monolayer via Tc & Nb impurities defect and water adsorption\",\"authors\":\"H. Neupane, Prakash Khatri, Arun Devkota, N. Adhikari\",\"doi\":\"10.3126/bibechana.v20i3.57470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the effect of Tc & Nb impurity atoms on MoS2 (Tc-MoS2 & Nb-MoS2 ), and adsorption of water molecule on impurities defected MoS2 (Tc-W-MoS2 & Nb-W-MoS2) material from first-principles calculations. By the estimation of their ground state energy and binding energy, they are stable 2D materials. From band structure and density of states (DoS) calculations, Tc & Nbimpurities affect the nature of pristine MoS2. It is found that Tc-MoS2 has n-type & Nb-MoS2 has p-type semiconducting nature. Water interaction on Tc-MoS2 & Nb-MoS2 slightly changes the electronic properties and impacts the bandgap, which enhanced the electronic performance of material than that of pristine MoS2. The magnetic properties of Tc-MoS2, Nb-MoS2, Tc-W-MoS2, and Nb-W-MoS2 are analyzed and found to exhibit an uneven distribution of up-spin and down-spin states of electrons in the orbital of atoms near the Fermi level. It reflects that they have magnetic properties. The non-magnetic MoS2 material changes in to weak magnetic defected-MoS2 materials due to the presence of Tc, Nb and adsorbed water molecule. It means, impurity defects add to magnetic properties of pristine MoS2. Magnetic properties on defected MoS2 occurred due to the dominant contributions of spin states of 4d-orbital of Mo, Tc, Nb atoms, and 3p-orbital of S atoms in the structures. This study highlights the impact of Tc & Nb impurity atoms and adsorbed water molecule on impurities defected MoS2. The studied materials have potential applications in the fields of catalysis, nanoelectronics, biomedicine, and magnetic sensors on the basis of their electronic and magnetic properties.\",\"PeriodicalId\":8759,\"journal\":{\"name\":\"Bibechana\",\"volume\":\"59 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bibechana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/bibechana.v20i3.57470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bibechana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/bibechana.v20i3.57470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过第一性原理计算,研究了 Tc 和 Nb 杂质原子对 MoS2(Tc-MoS2 和 Nb-MoS2)的影响,以及杂质缺陷 MoS2(Tc-W-MoS2 和 Nb-W-MoS2)材料对水分子的吸附。根据基态能和结合能的估算,它们都是稳定的二维材料。通过能带结构和态密度(DoS)计算,Tc 和 Nb 杂质会影响原始 MoS2 的性质。研究发现,锝-MoS2 具有 n 型半导体性质,而铌-MoS2 具有 p 型半导体性质。水对 Tc-MoS2 和 Nb-MoS2 的相互作用会轻微改变其电子特性并影响其带隙,从而使材料的电子性能优于原始 MoS2。对 Tc-MoS2、Nb-MoS2、Tc-W-MoS2 和 Nb-W-MoS2 的磁性能进行分析后发现,它们在费米级附近的原子轨道上呈现出电子的上旋和下旋态的不均匀分布。这反映出它们具有磁性。由于 Tc、Nb 和吸附水分子的存在,非磁性 MoS2 材料变成了弱磁性缺陷 MoS2 材料。这意味着杂质缺陷增加了原始 MoS2 的磁性。缺陷 MoS2 的磁性是由于结构中 Mo、Tc、Nb 原子的 4d-orbital 自旋态和 S 原子的 3p-orbital 自旋态的主要贡献。这项研究强调了 Tc 和 Nb 杂质原子以及吸附水分子对杂质缺陷 MoS2 的影响。基于其电子和磁性能,所研究的材料在催化、纳米电子学、生物医学和磁性传感器领域具有潜在的应用前景。
Electronic and magnetic performance of MoS2 monolayer via Tc & Nb impurities defect and water adsorption
This study examined the effect of Tc & Nb impurity atoms on MoS2 (Tc-MoS2 & Nb-MoS2 ), and adsorption of water molecule on impurities defected MoS2 (Tc-W-MoS2 & Nb-W-MoS2) material from first-principles calculations. By the estimation of their ground state energy and binding energy, they are stable 2D materials. From band structure and density of states (DoS) calculations, Tc & Nbimpurities affect the nature of pristine MoS2. It is found that Tc-MoS2 has n-type & Nb-MoS2 has p-type semiconducting nature. Water interaction on Tc-MoS2 & Nb-MoS2 slightly changes the electronic properties and impacts the bandgap, which enhanced the electronic performance of material than that of pristine MoS2. The magnetic properties of Tc-MoS2, Nb-MoS2, Tc-W-MoS2, and Nb-W-MoS2 are analyzed and found to exhibit an uneven distribution of up-spin and down-spin states of electrons in the orbital of atoms near the Fermi level. It reflects that they have magnetic properties. The non-magnetic MoS2 material changes in to weak magnetic defected-MoS2 materials due to the presence of Tc, Nb and adsorbed water molecule. It means, impurity defects add to magnetic properties of pristine MoS2. Magnetic properties on defected MoS2 occurred due to the dominant contributions of spin states of 4d-orbital of Mo, Tc, Nb atoms, and 3p-orbital of S atoms in the structures. This study highlights the impact of Tc & Nb impurity atoms and adsorbed water molecule on impurities defected MoS2. The studied materials have potential applications in the fields of catalysis, nanoelectronics, biomedicine, and magnetic sensors on the basis of their electronic and magnetic properties.