利用针对哨兵-1 C 波段合成孔径雷达数据的改进型杜波依斯模型估算裸露农田土壤的地表水分

Q3 Agricultural and Biological Sciences Journal of Agrometeorology Pub Date : 2023-11-30 DOI:10.54386/jam.v25i4.2303
Abishek Murugesan, R. Dave, Amit Kushwaha, Dharmendra Kumar Pandey, Koushik Saha
{"title":"利用针对哨兵-1 C 波段合成孔径雷达数据的改进型杜波依斯模型估算裸露农田土壤的地表水分","authors":"Abishek Murugesan, R. Dave, Amit Kushwaha, Dharmendra Kumar Pandey, Koushik Saha","doi":"10.54386/jam.v25i4.2303","DOIUrl":null,"url":null,"abstract":"Surface soil moisture has vital role in water energy balance, climate change and agriculture mainly for crop water requirements and irrigation scheduling. Microwave remote sensing with its unique characteristics of high penetration and sensitivity towards dielectric constant, has enabled the researchers to explore various techniques for soil moisture estimation. With the launch of Sentinel-1 (A&B) Synthetic Aperture Radar (SAR) satellites, the hindrance in accessing high spatial and temporal resolution data is eliminated. The current study focuses on surface soil moisture estimation for bare agricultural fields in the semi-arid region. Field soil moisture up to 5 cm depth using HydraGo Probe sensor and surface roughness synchronizing with satellite pass dates were collected from total 102 locations spanning four dates. Volumetric and sensor-based soil moisture are well correlated with R2 = 0.85. The Modified Dubois Model (MDM) was applied to obtain the relative permittivity of the soil for the backscattering coefficient (σ◦) for VV polarization, which is used as one of the inputs in universal Topp’s model for soil moisture calculation. Model derived soil moisture is well correlated with ground-based soil moisture for the entire range of the soil moisture (0.02-0.18 m3m-3) with R2 = 0.85 and RMSE=0.005. The entire soil moisture was categorized in three soil moisture ranges to evaluate the sensitivity. The highest correlation was observed for 0.06-0.1 m3m-3 with R2 = 0.73 and RMSE=0.003 followed by 0.015-0.6 m3m-3 with R2 = 0.81 and RMSE=0.001 and 0.11-0.18 m3m-3 with R2 = 0.48 and RMSE=0.019 which is significantly low. Performance accuracy of MDM is encouraging for bare soil moisture estimation for even the lower range of surface soil moisture.","PeriodicalId":56127,"journal":{"name":"Journal of Agrometeorology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface soil moisture estimation in bare agricultural soil using modified Dubois model for Sentinel-1 C-band SAR data\",\"authors\":\"Abishek Murugesan, R. Dave, Amit Kushwaha, Dharmendra Kumar Pandey, Koushik Saha\",\"doi\":\"10.54386/jam.v25i4.2303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface soil moisture has vital role in water energy balance, climate change and agriculture mainly for crop water requirements and irrigation scheduling. Microwave remote sensing with its unique characteristics of high penetration and sensitivity towards dielectric constant, has enabled the researchers to explore various techniques for soil moisture estimation. With the launch of Sentinel-1 (A&B) Synthetic Aperture Radar (SAR) satellites, the hindrance in accessing high spatial and temporal resolution data is eliminated. The current study focuses on surface soil moisture estimation for bare agricultural fields in the semi-arid region. Field soil moisture up to 5 cm depth using HydraGo Probe sensor and surface roughness synchronizing with satellite pass dates were collected from total 102 locations spanning four dates. Volumetric and sensor-based soil moisture are well correlated with R2 = 0.85. The Modified Dubois Model (MDM) was applied to obtain the relative permittivity of the soil for the backscattering coefficient (σ◦) for VV polarization, which is used as one of the inputs in universal Topp’s model for soil moisture calculation. Model derived soil moisture is well correlated with ground-based soil moisture for the entire range of the soil moisture (0.02-0.18 m3m-3) with R2 = 0.85 and RMSE=0.005. The entire soil moisture was categorized in three soil moisture ranges to evaluate the sensitivity. The highest correlation was observed for 0.06-0.1 m3m-3 with R2 = 0.73 and RMSE=0.003 followed by 0.015-0.6 m3m-3 with R2 = 0.81 and RMSE=0.001 and 0.11-0.18 m3m-3 with R2 = 0.48 and RMSE=0.019 which is significantly low. Performance accuracy of MDM is encouraging for bare soil moisture estimation for even the lower range of surface soil moisture.\",\"PeriodicalId\":56127,\"journal\":{\"name\":\"Journal of Agrometeorology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54386/jam.v25i4.2303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54386/jam.v25i4.2303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

地表土壤水分在水能平衡、气候变化和农业(主要用于作物需水和灌溉调度)中发挥着重要作用。微波遥感具有穿透力强和对介电常数敏感的独特特性,使研究人员能够探索各种土壤水分估算技术。随着哨兵-1(A&B)合成孔径雷达(SAR)卫星的发射,获取高空间和时间分辨率数据的障碍被消除了。本次研究的重点是半干旱地区裸露农田的表层土壤水分估算。利用 HydraGo Probe 传感器和与卫星通过日期同步的表面粗糙度,从四个日期的 102 个地点收集了深度达 5 厘米的田间土壤水分。体积土壤水分和传感器土壤水分的相关性很好,R2 = 0.85。应用修正的杜波依斯模型(MDM)获得了 VV 极化反向散射系数(σ◦)的土壤相对介电常数,该系数被用作计算土壤水分的通用托普模型的输入值之一。在整个土壤水分范围(0.02-0.18 m3m-3)内,模型得出的土壤水分与地面土壤水分相关性良好,R2 = 0.85,RMSE=0.005。为评估灵敏度,将整个土壤湿度分为三个土壤湿度范围。0.06-0.1 m3m-3 的相关性最高,R2 = 0.73,RMSE=0.003;其次是 0.015-0.6 m3m-3,R2 = 0.81,RMSE=0.001;0.11-0.18 m3m-3,R2 = 0.48,RMSE=0.019,相关性明显较低。对于裸露土壤水分的估算,即使是较低范围的地表土壤水分,MDM 的性能精度也是令人鼓舞的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface soil moisture estimation in bare agricultural soil using modified Dubois model for Sentinel-1 C-band SAR data
Surface soil moisture has vital role in water energy balance, climate change and agriculture mainly for crop water requirements and irrigation scheduling. Microwave remote sensing with its unique characteristics of high penetration and sensitivity towards dielectric constant, has enabled the researchers to explore various techniques for soil moisture estimation. With the launch of Sentinel-1 (A&B) Synthetic Aperture Radar (SAR) satellites, the hindrance in accessing high spatial and temporal resolution data is eliminated. The current study focuses on surface soil moisture estimation for bare agricultural fields in the semi-arid region. Field soil moisture up to 5 cm depth using HydraGo Probe sensor and surface roughness synchronizing with satellite pass dates were collected from total 102 locations spanning four dates. Volumetric and sensor-based soil moisture are well correlated with R2 = 0.85. The Modified Dubois Model (MDM) was applied to obtain the relative permittivity of the soil for the backscattering coefficient (σ◦) for VV polarization, which is used as one of the inputs in universal Topp’s model for soil moisture calculation. Model derived soil moisture is well correlated with ground-based soil moisture for the entire range of the soil moisture (0.02-0.18 m3m-3) with R2 = 0.85 and RMSE=0.005. The entire soil moisture was categorized in three soil moisture ranges to evaluate the sensitivity. The highest correlation was observed for 0.06-0.1 m3m-3 with R2 = 0.73 and RMSE=0.003 followed by 0.015-0.6 m3m-3 with R2 = 0.81 and RMSE=0.001 and 0.11-0.18 m3m-3 with R2 = 0.48 and RMSE=0.019 which is significantly low. Performance accuracy of MDM is encouraging for bare soil moisture estimation for even the lower range of surface soil moisture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agrometeorology
Journal of Agrometeorology 农林科学-农艺学
CiteScore
1.40
自引率
0.00%
发文量
95
审稿时长
>12 weeks
期刊介绍: The Journal of Agrometeorology (ISSN 0972-1665) , is a quarterly publication of Association of Agrometeorologists appearing in March, June, September and December. Since its beginning in 1999 till 2016, it was a half yearly publication appearing in June and December. In addition to regular issues, Association also brings out the special issues of the journal covering selected papers presented in seminar symposia organized by the Association.
期刊最新文献
Development of weather based statistical models for Rhizoctonia aerial blight disease of soybean in Tarai region of Uttarakhand Water use efficiency and water productivity of aerobic rice under drip irrigation and fertigation system by using daily soil water balance Drought severity estimation using NDWI index in Parbhani district of Maharashtra Comparison of machine learning classification algorithms based on weather variables and seed characteristics for the selection of paddy seed Growth performance and agrometeorological indices of rice under different establishment methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1