{"title":"棉竹混纺对不同结构三叶涤纶超细纤维针织物防紫外线性能和功能用途的影响","authors":"M. A. Ali, K. Seddik","doi":"10.14502/tekstilec.66.2023039","DOIUrl":null,"url":null,"abstract":"Resistance to ultraviolet radiation and electrostatic charge is a basic property that must be considered in the manufacture of fabrics, particularly in light of the climate changes affecting people around the world in various regions, especially in subtropical and tropical regions. It has thus become necessary to focus on the use of different natural fibres to mitigate UV transitions and the formation of electrostatic charges. The aim of this research was to enhance the protection of the ultraviolet effect and reduce electrostatic charge formation by blending cellulose yarns (bamboo and cotton) with trilobal polyester microfiber yarn that has characteristics such as lightweight, low-thickness, high strength, and shine. Knitted samples were produced from two different structures according to their tightness factor (single jersey and fleece structures), the various functional properties of the produced fabrics, such as mass per unit area, thickness, air and water permeability, and bursting strength, were tested. The properties of electrostatic charge and the ultraviolet protection factor (UPF) were also determined. The findings indicate that the samples produced with bamboo resulted in a preferable performance with different structures, especially when considering electrostatic charge and UPF properties. Moreover, the fleece structure had a more significant effect on knitted samples’ behaviour than the single jersey (plain) structure.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":"256 5","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Blending Cotton/Bamboo on UV Protection and Functional Purposes of Trilobal Polyester Microfibers Knitted Fabrics Using Different Structures\",\"authors\":\"M. A. Ali, K. Seddik\",\"doi\":\"10.14502/tekstilec.66.2023039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance to ultraviolet radiation and electrostatic charge is a basic property that must be considered in the manufacture of fabrics, particularly in light of the climate changes affecting people around the world in various regions, especially in subtropical and tropical regions. It has thus become necessary to focus on the use of different natural fibres to mitigate UV transitions and the formation of electrostatic charges. The aim of this research was to enhance the protection of the ultraviolet effect and reduce electrostatic charge formation by blending cellulose yarns (bamboo and cotton) with trilobal polyester microfiber yarn that has characteristics such as lightweight, low-thickness, high strength, and shine. Knitted samples were produced from two different structures according to their tightness factor (single jersey and fleece structures), the various functional properties of the produced fabrics, such as mass per unit area, thickness, air and water permeability, and bursting strength, were tested. The properties of electrostatic charge and the ultraviolet protection factor (UPF) were also determined. The findings indicate that the samples produced with bamboo resulted in a preferable performance with different structures, especially when considering electrostatic charge and UPF properties. Moreover, the fleece structure had a more significant effect on knitted samples’ behaviour than the single jersey (plain) structure.\",\"PeriodicalId\":22555,\"journal\":{\"name\":\"TEKSTILEC\",\"volume\":\"256 5\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKSTILEC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14502/tekstilec.66.2023039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKSTILEC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14502/tekstilec.66.2023039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Effect of Blending Cotton/Bamboo on UV Protection and Functional Purposes of Trilobal Polyester Microfibers Knitted Fabrics Using Different Structures
Resistance to ultraviolet radiation and electrostatic charge is a basic property that must be considered in the manufacture of fabrics, particularly in light of the climate changes affecting people around the world in various regions, especially in subtropical and tropical regions. It has thus become necessary to focus on the use of different natural fibres to mitigate UV transitions and the formation of electrostatic charges. The aim of this research was to enhance the protection of the ultraviolet effect and reduce electrostatic charge formation by blending cellulose yarns (bamboo and cotton) with trilobal polyester microfiber yarn that has characteristics such as lightweight, low-thickness, high strength, and shine. Knitted samples were produced from two different structures according to their tightness factor (single jersey and fleece structures), the various functional properties of the produced fabrics, such as mass per unit area, thickness, air and water permeability, and bursting strength, were tested. The properties of electrostatic charge and the ultraviolet protection factor (UPF) were also determined. The findings indicate that the samples produced with bamboo resulted in a preferable performance with different structures, especially when considering electrostatic charge and UPF properties. Moreover, the fleece structure had a more significant effect on knitted samples’ behaviour than the single jersey (plain) structure.