碳纳米管复合材料与 Ti-6Al-4V 的快速成型制造

IF 0.5 Q4 PHYSICS, APPLIED Latvian Journal of Physics and Technical Sciences Pub Date : 2023-11-30 DOI:10.2478/lpts-2023-0039
A. Vevers, A. Kromanis
{"title":"碳纳米管复合材料与 Ti-6Al-4V 的快速成型制造","authors":"A. Vevers, A. Kromanis","doi":"10.2478/lpts-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract This research is dedicated to investigating whether mechanical properties of Ti-6Al-4V (Titanium Grade 5) base material for additive manufacturing processes can be improved by addition of carbon nanotubes in the base material. Based on other research results with other materials, the assumption was made that reinforcing Ti-6Al-4V material with carbon nano-tubes should improve mechanical properties of the base material by 15–20 % in the additive manufacturing process. The research was divided in two steps, the first one was to investigate pure Ti-6Al-4V material and find optimal additive manufacturing processing parameters, which could maintain necessary quality standards and achieve material density levels higher than 98 % and tensile strength higher than 1000 MPa. The second part was to mix base powder with carbon nanotubes and using previously obtained processing parameters print test samples to investigate how a carbon nanotube concentration in a base powder would influence mechanical properties of the base material.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"38 1","pages":"100 - 112"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Ti-6Al-4V with Carbon Nanotube Composite Material\",\"authors\":\"A. Vevers, A. Kromanis\",\"doi\":\"10.2478/lpts-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research is dedicated to investigating whether mechanical properties of Ti-6Al-4V (Titanium Grade 5) base material for additive manufacturing processes can be improved by addition of carbon nanotubes in the base material. Based on other research results with other materials, the assumption was made that reinforcing Ti-6Al-4V material with carbon nano-tubes should improve mechanical properties of the base material by 15–20 % in the additive manufacturing process. The research was divided in two steps, the first one was to investigate pure Ti-6Al-4V material and find optimal additive manufacturing processing parameters, which could maintain necessary quality standards and achieve material density levels higher than 98 % and tensile strength higher than 1000 MPa. The second part was to mix base powder with carbon nanotubes and using previously obtained processing parameters print test samples to investigate how a carbon nanotube concentration in a base powder would influence mechanical properties of the base material.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"38 1\",\"pages\":\"100 - 112\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2023-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究致力于探讨是否可以通过在基础材料中添加碳纳米管来改善用于增材制造工艺的 Ti-6Al-4V (钛 5 级)基础材料的机械性能。根据对其他材料的研究结果,假设用碳纳米管增强 Ti-6Al-4V 材料,应能在快速成型工艺中将基础材料的机械性能提高 15-20%。研究分为两步,第一步是研究纯 Ti-6Al-4V 材料,并找到最佳的增材制造加工参数,以保持必要的质量标准,使材料密度高于 98%,抗拉强度高于 1000 兆帕。第二部分是将基础粉末与碳纳米管混合,并使用之前获得的加工参数打印测试样品,以研究碳纳米管在基础粉末中的浓度如何影响基础材料的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Manufacturing of Ti-6Al-4V with Carbon Nanotube Composite Material
Abstract This research is dedicated to investigating whether mechanical properties of Ti-6Al-4V (Titanium Grade 5) base material for additive manufacturing processes can be improved by addition of carbon nanotubes in the base material. Based on other research results with other materials, the assumption was made that reinforcing Ti-6Al-4V material with carbon nano-tubes should improve mechanical properties of the base material by 15–20 % in the additive manufacturing process. The research was divided in two steps, the first one was to investigate pure Ti-6Al-4V material and find optimal additive manufacturing processing parameters, which could maintain necessary quality standards and achieve material density levels higher than 98 % and tensile strength higher than 1000 MPa. The second part was to mix base powder with carbon nanotubes and using previously obtained processing parameters print test samples to investigate how a carbon nanotube concentration in a base powder would influence mechanical properties of the base material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
16.70%
发文量
41
审稿时长
5 weeks
期刊介绍: Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.
期刊最新文献
The Use of Renewable Energy and Capillary Heat Exchangers for Energy Savings in the Existing Apartment Modelling of Methanol Production From Biogas Applying Dynamic U-Value Measurements for State Forecasting in Buildings Numerical Insights Into Gas Mixing System Design for Energy Conversion Processes Density-Based Topological Optimization of 3D-Printed Casts for Fracture Treatment with Freefem Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1