基于改进的灰色关联度 IOWHA 运算符的区间类型组合预测模型

Feng Xu, Xiaowei Cai
{"title":"基于改进的灰色关联度 IOWHA 运算符的区间类型组合预测模型","authors":"Feng Xu, Xiaowei Cai","doi":"10.54097/fcis.v6i1.23","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of interval number prediction, this paper proposes a new type of interval number combination prediction model based on improved grey correlation degree and IOWHA operator. Transform the interval number into the center and radius of equivalent information, introduce the IOWHA operator, use the interval number prediction accuracy as the inducing factor, and improve the grey correlation degree as the optimal criterion to construct a variable weight interval type combination prediction model based on the improved grey correlation degree and IOWHA operator. And the variable weight coefficient interval type combination prediction model is applied to the prediction of interval number sequences, and the example proves that the model is effective.","PeriodicalId":346823,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval Type Combination Prediction Model based on Improved Grey Correlation Degree IOWHA Operator\",\"authors\":\"Feng Xu, Xiaowei Cai\",\"doi\":\"10.54097/fcis.v6i1.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy of interval number prediction, this paper proposes a new type of interval number combination prediction model based on improved grey correlation degree and IOWHA operator. Transform the interval number into the center and radius of equivalent information, introduce the IOWHA operator, use the interval number prediction accuracy as the inducing factor, and improve the grey correlation degree as the optimal criterion to construct a variable weight interval type combination prediction model based on the improved grey correlation degree and IOWHA operator. And the variable weight coefficient interval type combination prediction model is applied to the prediction of interval number sequences, and the example proves that the model is effective.\",\"PeriodicalId\":346823,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/fcis.v6i1.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/fcis.v6i1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高区间数预测的精度,本文提出了一种基于改进的灰色关联度和 IOWHA 算子的新型区间数组合预测模型。将区间数转化为等效信息的中心和半径,引入 IOWHA 算子,以区间数预测精度为诱导因素,以提高灰色关联度为最优准则,构建基于改进灰色关联度和 IOWHA 算子的变权重区间数组合预测模型。并将变权重系数区间类型组合预测模型应用于区间数序列的预测,实例证明该模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interval Type Combination Prediction Model based on Improved Grey Correlation Degree IOWHA Operator
In order to improve the accuracy of interval number prediction, this paper proposes a new type of interval number combination prediction model based on improved grey correlation degree and IOWHA operator. Transform the interval number into the center and radius of equivalent information, introduce the IOWHA operator, use the interval number prediction accuracy as the inducing factor, and improve the grey correlation degree as the optimal criterion to construct a variable weight interval type combination prediction model based on the improved grey correlation degree and IOWHA operator. And the variable weight coefficient interval type combination prediction model is applied to the prediction of interval number sequences, and the example proves that the model is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Relationship between Social Responsibility and Brand Value of Chinese Food and Beverage Enterprises in the Context of High-Quality Development PCB Board Defect Detection Method based on Improved YOLOv8 Collaborative Optimization of Supply Chain Intelligent Management and Industrial Artificial Intelligence Research on the Application of Non-contact Sensing Technology in Real-time Emotional Monitoring and Feedback The Collaborative Application of Internet of Things and Artificial Intelligence in Smart Logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1