Faisal Mahmuddin, Muhammad Iqshal Naitullah Jasman, Syerly Klara, Ahmad Fitriadhy
{"title":"应用 CFD 仿真确定螺旋桨冷却系统 (PFCS) 喷嘴入口的最佳水平位置","authors":"Faisal Mahmuddin, Muhammad Iqshal Naitullah Jasman, Syerly Klara, Ahmad Fitriadhy","doi":"10.37934/cfdl.16.2.5566","DOIUrl":null,"url":null,"abstract":"Research on the use of fluid flow caused by the propeller to be used for engine cooling is an interesting research topic. The system is known as the Propeller Flow Cooling System (PFCS). It is necessary to develop the most optimal position to produce maximum water discharge in this system. This research carried out simulation and analysis with an elliptical inlet nozzle as the utilization of the stern flow of the ship. This study aims to determine the difference in the volume of water generated from several horizontal positions of the nozzle inlet. In this study, the simulated horizontal distance of the inlet nozzle to the propeller at 0.7R propeller blade that is, 5 cm, 7.5 cm, 10 cm, 12.5 cm, 15 cm and using the computational dynamic fluid (CFD) method to analyze the optimal horizontal distance of the inlet nozzle which produces the highest water flow rate. Based on the research result, it was shown that the optimal horizontal distance of the inlet nozzle to the propeller is a distance of 7.5 cm. The water flow generated in the computational simulation in this case was 14.24 liters/minute. In that case, it can be concluded that the effect of the horizontal distance of the inlet nozzle on the propeller greatly affects the flow of water produced.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of CFD Simulation to Determine the Optimal Horizontal Position of the Nozzle Inlet of a Propeller Flow Cooling System (PFCS)\",\"authors\":\"Faisal Mahmuddin, Muhammad Iqshal Naitullah Jasman, Syerly Klara, Ahmad Fitriadhy\",\"doi\":\"10.37934/cfdl.16.2.5566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on the use of fluid flow caused by the propeller to be used for engine cooling is an interesting research topic. The system is known as the Propeller Flow Cooling System (PFCS). It is necessary to develop the most optimal position to produce maximum water discharge in this system. This research carried out simulation and analysis with an elliptical inlet nozzle as the utilization of the stern flow of the ship. This study aims to determine the difference in the volume of water generated from several horizontal positions of the nozzle inlet. In this study, the simulated horizontal distance of the inlet nozzle to the propeller at 0.7R propeller blade that is, 5 cm, 7.5 cm, 10 cm, 12.5 cm, 15 cm and using the computational dynamic fluid (CFD) method to analyze the optimal horizontal distance of the inlet nozzle which produces the highest water flow rate. Based on the research result, it was shown that the optimal horizontal distance of the inlet nozzle to the propeller is a distance of 7.5 cm. The water flow generated in the computational simulation in this case was 14.24 liters/minute. In that case, it can be concluded that the effect of the horizontal distance of the inlet nozzle on the propeller greatly affects the flow of water produced.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.2.5566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.2.5566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Application of CFD Simulation to Determine the Optimal Horizontal Position of the Nozzle Inlet of a Propeller Flow Cooling System (PFCS)
Research on the use of fluid flow caused by the propeller to be used for engine cooling is an interesting research topic. The system is known as the Propeller Flow Cooling System (PFCS). It is necessary to develop the most optimal position to produce maximum water discharge in this system. This research carried out simulation and analysis with an elliptical inlet nozzle as the utilization of the stern flow of the ship. This study aims to determine the difference in the volume of water generated from several horizontal positions of the nozzle inlet. In this study, the simulated horizontal distance of the inlet nozzle to the propeller at 0.7R propeller blade that is, 5 cm, 7.5 cm, 10 cm, 12.5 cm, 15 cm and using the computational dynamic fluid (CFD) method to analyze the optimal horizontal distance of the inlet nozzle which produces the highest water flow rate. Based on the research result, it was shown that the optimal horizontal distance of the inlet nozzle to the propeller is a distance of 7.5 cm. The water flow generated in the computational simulation in this case was 14.24 liters/minute. In that case, it can be concluded that the effect of the horizontal distance of the inlet nozzle on the propeller greatly affects the flow of water produced.