S. Sri, Manjusha Varshini, M. Mekala, R. Ragunathan
{"title":"用醋酸纤维菌株制造生物可降解食品包装材料的生物纤维素优化、表征和细胞毒性研究","authors":"S. Sri, Manjusha Varshini, M. Mekala, R. Ragunathan","doi":"10.22207/jpam.17.4.32","DOIUrl":null,"url":null,"abstract":"Acetic acid bacteria synthesized microbial cellulose were isolated from various citrus fruits, enabled by increased cellulose production to develop a biodegradable polymer as a food wrapper. The objective of the research cynosures on the isolation, enrichment, identification, and optimization of bacteria that produce cellulose, characterization, and cytotoxic study of the obtained cellulose. Two highly effective cellulose producers, Acetobacter lovaniensis (A1) and Acetobacter fabarum (A2), were isolated based on their morphology, biochemical analysis, and 16s rRNA sequencing. Studies were conducted to optimize pH, temperature, inoculum size, nitrogen, and carbon sources. Strain A1 produced 0.715 g/100 ml, whereas A2 produced 0.856 g/100 ml of cellulose under optimum growth conditions. The characteristics of microbial cellulose were examined using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). A cytotoxicity study for the obtained cellulose has been conducted with mouse embryo fibroblast cells (3T3-L1) and showed 97% viability of cells with the lowest concentration of 12.5 µg/ml. These isolates could be employed in fermentation technology to produce cellulose polymer-based sustainable biodegradable food wrappers.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":"303 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization, Characterization, and Cytotoxic Study of Bio Cellulose by Acetobacter sp Strains to Engender Biodegradable Food Wrapper\",\"authors\":\"S. Sri, Manjusha Varshini, M. Mekala, R. Ragunathan\",\"doi\":\"10.22207/jpam.17.4.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acetic acid bacteria synthesized microbial cellulose were isolated from various citrus fruits, enabled by increased cellulose production to develop a biodegradable polymer as a food wrapper. The objective of the research cynosures on the isolation, enrichment, identification, and optimization of bacteria that produce cellulose, characterization, and cytotoxic study of the obtained cellulose. Two highly effective cellulose producers, Acetobacter lovaniensis (A1) and Acetobacter fabarum (A2), were isolated based on their morphology, biochemical analysis, and 16s rRNA sequencing. Studies were conducted to optimize pH, temperature, inoculum size, nitrogen, and carbon sources. Strain A1 produced 0.715 g/100 ml, whereas A2 produced 0.856 g/100 ml of cellulose under optimum growth conditions. The characteristics of microbial cellulose were examined using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). A cytotoxicity study for the obtained cellulose has been conducted with mouse embryo fibroblast cells (3T3-L1) and showed 97% viability of cells with the lowest concentration of 12.5 µg/ml. These isolates could be employed in fermentation technology to produce cellulose polymer-based sustainable biodegradable food wrappers.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\"303 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.4.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.4.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Optimization, Characterization, and Cytotoxic Study of Bio Cellulose by Acetobacter sp Strains to Engender Biodegradable Food Wrapper
Acetic acid bacteria synthesized microbial cellulose were isolated from various citrus fruits, enabled by increased cellulose production to develop a biodegradable polymer as a food wrapper. The objective of the research cynosures on the isolation, enrichment, identification, and optimization of bacteria that produce cellulose, characterization, and cytotoxic study of the obtained cellulose. Two highly effective cellulose producers, Acetobacter lovaniensis (A1) and Acetobacter fabarum (A2), were isolated based on their morphology, biochemical analysis, and 16s rRNA sequencing. Studies were conducted to optimize pH, temperature, inoculum size, nitrogen, and carbon sources. Strain A1 produced 0.715 g/100 ml, whereas A2 produced 0.856 g/100 ml of cellulose under optimum growth conditions. The characteristics of microbial cellulose were examined using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). A cytotoxicity study for the obtained cellulose has been conducted with mouse embryo fibroblast cells (3T3-L1) and showed 97% viability of cells with the lowest concentration of 12.5 µg/ml. These isolates could be employed in fermentation technology to produce cellulose polymer-based sustainable biodegradable food wrappers.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.