Jordan Clark, Charles E. Konrad, Andrew Grundstein
{"title":"湿球温度预报的发展和准确性评估","authors":"Jordan Clark, Charles E. Konrad, Andrew Grundstein","doi":"10.1175/waf-d-23-0076.1","DOIUrl":null,"url":null,"abstract":"Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature (WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center (SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts are compared with in situ WBGT measurements (during the summers of 2019-2021) and estimates from weather stations to assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.6°C of observations on average and showed less bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISA WBGT forecast was more accurate for the most dangerous conditions (WBGT > 31°C), although this resulted in higher false alarms for these extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered from wind by better accounting for the influences of land cover on 2-meter wind speed. Accurate forecasts are more challenging for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite, real-time WBGT measurements remain critical.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development and Accuracy Assessment of Wet Bulb Globe Temperature Forecasts\",\"authors\":\"Jordan Clark, Charles E. Konrad, Andrew Grundstein\",\"doi\":\"10.1175/waf-d-23-0076.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature (WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center (SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts are compared with in situ WBGT measurements (during the summers of 2019-2021) and estimates from weather stations to assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.6°C of observations on average and showed less bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISA WBGT forecast was more accurate for the most dangerous conditions (WBGT > 31°C), although this resulted in higher false alarms for these extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered from wind by better accounting for the influences of land cover on 2-meter wind speed. Accurate forecasts are more challenging for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite, real-time WBGT measurements remain critical.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0076.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0076.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Development and Accuracy Assessment of Wet Bulb Globe Temperature Forecasts
Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature (WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center (SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts are compared with in situ WBGT measurements (during the summers of 2019-2021) and estimates from weather stations to assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.6°C of observations on average and showed less bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISA WBGT forecast was more accurate for the most dangerous conditions (WBGT > 31°C), although this resulted in higher false alarms for these extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered from wind by better accounting for the influences of land cover on 2-meter wind speed. Accurate forecasts are more challenging for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite, real-time WBGT measurements remain critical.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.