{"title":"使用潜在德里赫利分配对 twitter 上的洪水相关主题进行建模","authors":"M. Irwansyah, Muhammad Habibi, Fajar Syahruddin","doi":"10.30989/teknomatika.v16i1.1139","DOIUrl":null,"url":null,"abstract":"In this background discusses the topic of tweet about Flooding on Twitter using the keyword \"Flood\". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.","PeriodicalId":508475,"journal":{"name":"Teknomatika: Jurnal Informatika dan Komputer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEMODELAN TOPIK TERKAIT BANJIR PADA TWITTER DENGAN MENGGUNAKAN LATENT DIRICHLET ALLOCATION\",\"authors\":\"M. Irwansyah, Muhammad Habibi, Fajar Syahruddin\",\"doi\":\"10.30989/teknomatika.v16i1.1139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this background discusses the topic of tweet about Flooding on Twitter using the keyword \\\"Flood\\\". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.\",\"PeriodicalId\":508475,\"journal\":{\"name\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30989/teknomatika.v16i1.1139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknomatika: Jurnal Informatika dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30989/teknomatika.v16i1.1139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PEMODELAN TOPIK TERKAIT BANJIR PADA TWITTER DENGAN MENGGUNAKAN LATENT DIRICHLET ALLOCATION
In this background discusses the topic of tweet about Flooding on Twitter using the keyword "Flood". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.