使用潜在德里赫利分配对 twitter 上的洪水相关主题进行建模

M. Irwansyah, Muhammad Habibi, Fajar Syahruddin
{"title":"使用潜在德里赫利分配对 twitter 上的洪水相关主题进行建模","authors":"M. Irwansyah, Muhammad Habibi, Fajar Syahruddin","doi":"10.30989/teknomatika.v16i1.1139","DOIUrl":null,"url":null,"abstract":"In this background discusses the topic of tweet about Flooding on Twitter using the keyword \"Flood\". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.","PeriodicalId":508475,"journal":{"name":"Teknomatika: Jurnal Informatika dan Komputer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEMODELAN TOPIK TERKAIT BANJIR PADA TWITTER DENGAN MENGGUNAKAN LATENT DIRICHLET ALLOCATION\",\"authors\":\"M. Irwansyah, Muhammad Habibi, Fajar Syahruddin\",\"doi\":\"10.30989/teknomatika.v16i1.1139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this background discusses the topic of tweet about Flooding on Twitter using the keyword \\\"Flood\\\". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.\",\"PeriodicalId\":508475,\"journal\":{\"name\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30989/teknomatika.v16i1.1139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknomatika: Jurnal Informatika dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30989/teknomatika.v16i1.1139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本背景中,使用关键词 "洪水 "讨论了 Twitter 上有关洪水的推文主题。推文数据取自 2021 年 6 月 1 日至 2021 年 6 月 2 日,获得的推文数据数量为 2000 条。与洪水相关的推文数量尚未分析,因此其中包含的主题尚不得而知。研究 .利用 LDA 方法对 Twitter 社交媒体上与印度尼西亚洪灾相关的话题进行建模。研究。本研究采用实验方法,使用多个变量来检验假设。然后分阶段处理数据,即网络数据提取、预处理、特征提取、使用潜在德里克利特分配算法进行话题建模、可视化和分析。研究。主题一致性阶段的结果是从一开始确定的 20 个主题中寻找最优主题。20 个主题的主题一致性结果认为,主题 10 的总主题值为 0.41,具有理想的主题建模结果,符合规定。结论:根据话题一致性的讨论结果,可以得出结论,最理想的话题数量是话题 10,因为与其他话题相比,它的话题值最高。这里的建议是能够实时、准确地显示或获取印尼的洪水信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEMODELAN TOPIK TERKAIT BANJIR PADA TWITTER DENGAN MENGGUNAKAN LATENT DIRICHLET ALLOCATION
In this background discusses the topic of tweet about Flooding on Twitter using the keyword "Flood". Tweet data was taken from June 1, 2021 to June 2, 2021 with the number of tweet data obtained, which was 2000 tweets. The number of tweets related to flooding has not been analyzed so that the topics contained in it are not yet known. Research . Modeling topics related to floods in Indonesia on Twitter social media with the LDA method. Research. This study uses experimental methods with several variables to test hypotheses. Then the data is processed with stages, namely web data extraction, preprocessing, feature extraction, topic modeling using latent dirichlet allocation algorithms, visualization, and analysis. Research. The results of the topic coherence stage were carried out a search for the most optimal topic from the 20 topics that had been determined at the beginning. The results of topic coherence for 20 topics concluded that for topic 10 it has a total topic value of 0.41 and has an ideal topic modeling result and is in accordance with the provisions. Conclusion : Based on the results of the discussion of topic coherence, it can be concluded that the most ideal number of topics is topic 10 because it has the highest value compared to other topics. The advice here is to be able to display or get flood information in Indonesia in real time and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementasi Penggunaan Algoritma Weighted Product untuk Sistem Pendukung Keputusan Bantuan Lansia CParts Platform Analisis Harga Komponen Komputer pada Marketplace Analisis Kerentanan Menggunakan Vulnerability Assessment pada Situs Web Perguruan Tinggi Desain User Interface Dan User Experience Prototype Mobile Learning Menggunakan Metode Design Thinking Metode Design Thinking Analisis Tingkat Security Awareness-Personal Threat Terhadap Ancaman Phishing Dengan Metode Technology Threat Avoidance Theory (TTAT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1