Uday Abdul, Sahib M. Alturfi, Abdul-Hassan K. Shukur
{"title":"基于计算流体动力学模型的不同防波堤能量耗散研究","authors":"Uday Abdul, Sahib M. Alturfi, Abdul-Hassan K. Shukur","doi":"10.37934/cfdl.16.1.2242","DOIUrl":null,"url":null,"abstract":"In this research, the hydraulic performance of the combined shape breakwaters was investigated through a laboratory study supported by a numerical mathematical model CFD to examine the different model shapes depending on the transmissions wave coefficient Ct. In order to stabilize the incident wave Hi with the same characteristics, waves were defined through the UDF file for CFD model. To investigated the performance of breakwaters base on energy dissipations, different models were tested under various wave condition, water depth, and relative submerged depth. Result of this study are showed that the Transmission coefficient are increased with increased of incident wave high for all type of breakwater model, and for all models of breakwater, transmission wave height (Ht) are increased with increased relative submerged depth (Hs/Hi). The highest value for energy dissipations (1 - Ct) % are received for zero submerged depth in model of sloped steps model (M2) is 80 %. Ansys Fluent solver are adopted to modelling the transit flow condition with dynamic mesh to represent the flap motion type to generate wave. Numerical beach plays an important role in CFD model to prevent the reflection wave in lee side of breakwater and represent the absorbing shoreline. 240 grid per wave length are selected for Mesh independent solution and make acceptable result comparison with experimental.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Energy Dissipation for Different Breakwater Based on Computational Fluid Dynamic Model\",\"authors\":\"Uday Abdul, Sahib M. Alturfi, Abdul-Hassan K. Shukur\",\"doi\":\"10.37934/cfdl.16.1.2242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the hydraulic performance of the combined shape breakwaters was investigated through a laboratory study supported by a numerical mathematical model CFD to examine the different model shapes depending on the transmissions wave coefficient Ct. In order to stabilize the incident wave Hi with the same characteristics, waves were defined through the UDF file for CFD model. To investigated the performance of breakwaters base on energy dissipations, different models were tested under various wave condition, water depth, and relative submerged depth. Result of this study are showed that the Transmission coefficient are increased with increased of incident wave high for all type of breakwater model, and for all models of breakwater, transmission wave height (Ht) are increased with increased relative submerged depth (Hs/Hi). The highest value for energy dissipations (1 - Ct) % are received for zero submerged depth in model of sloped steps model (M2) is 80 %. Ansys Fluent solver are adopted to modelling the transit flow condition with dynamic mesh to represent the flap motion type to generate wave. Numerical beach plays an important role in CFD model to prevent the reflection wave in lee side of breakwater and represent the absorbing shoreline. 240 grid per wave length are selected for Mesh independent solution and make acceptable result comparison with experimental.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.1.2242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.1.2242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Investigation of Energy Dissipation for Different Breakwater Based on Computational Fluid Dynamic Model
In this research, the hydraulic performance of the combined shape breakwaters was investigated through a laboratory study supported by a numerical mathematical model CFD to examine the different model shapes depending on the transmissions wave coefficient Ct. In order to stabilize the incident wave Hi with the same characteristics, waves were defined through the UDF file for CFD model. To investigated the performance of breakwaters base on energy dissipations, different models were tested under various wave condition, water depth, and relative submerged depth. Result of this study are showed that the Transmission coefficient are increased with increased of incident wave high for all type of breakwater model, and for all models of breakwater, transmission wave height (Ht) are increased with increased relative submerged depth (Hs/Hi). The highest value for energy dissipations (1 - Ct) % are received for zero submerged depth in model of sloped steps model (M2) is 80 %. Ansys Fluent solver are adopted to modelling the transit flow condition with dynamic mesh to represent the flap motion type to generate wave. Numerical beach plays an important role in CFD model to prevent the reflection wave in lee side of breakwater and represent the absorbing shoreline. 240 grid per wave length are selected for Mesh independent solution and make acceptable result comparison with experimental.