玻璃纤维管道连续长丝缠绕自动化系统

Oleg Kivirenko, Stanislav Kostenko, Volodymyr Sorokin, Yevgen Tsegelnyk, Sergiy Plankovskyy, V. Kombarov, O. M. Beketov
{"title":"玻璃纤维管道连续长丝缠绕自动化系统","authors":"Oleg Kivirenko, Stanislav Kostenko, Volodymyr Sorokin, Yevgen Tsegelnyk, Sergiy Plankovskyy, V. Kombarov, O. M. Beketov","doi":"10.17683/ijomam/issue14.28","DOIUrl":null,"url":null,"abstract":"– The fiberglass composite materials in many ways solve the problems of operation and maintenance of pipelines in various industries and municipal services. Continuous filament winding is a progressive production method with a high degree of automation. It is necessary to take into account the complex influence of the technological parameters of the used winding method when designing the product structure. The actual problem of creating specialized equipment with continuous axial movement of the wound product is considered. Continuous winding ensures a constant product structure along its entire length. A study of a model for the formation of the structure of a fiber-reinforced pipe during continuous oblique-layer longitudinal-transverse winding is presented. Several types of devices providing the ability to perform continuous filament winding automation have been studied. Mathematical equations for the control parameters of these devices depending on the technological parameters of the winding process are obtained. The possibility of forming a pipe wall thickening in given areas while maintaining the reinforcement structure is shown. Examples of created automated continuous pipe winding equipment are given. A two-level CNC system with coupled control is used to control the equipment. The proposed solutions ensure stable reproduction of the reinforcement structure in modern pipe production conditions.","PeriodicalId":52126,"journal":{"name":"International Journal of Mechatronics and Applied Mechanics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIBERGLASS PIPELINE CONTINUOUS FILAMENT WINDING AUTOMATION\",\"authors\":\"Oleg Kivirenko, Stanislav Kostenko, Volodymyr Sorokin, Yevgen Tsegelnyk, Sergiy Plankovskyy, V. Kombarov, O. M. Beketov\",\"doi\":\"10.17683/ijomam/issue14.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– The fiberglass composite materials in many ways solve the problems of operation and maintenance of pipelines in various industries and municipal services. Continuous filament winding is a progressive production method with a high degree of automation. It is necessary to take into account the complex influence of the technological parameters of the used winding method when designing the product structure. The actual problem of creating specialized equipment with continuous axial movement of the wound product is considered. Continuous winding ensures a constant product structure along its entire length. A study of a model for the formation of the structure of a fiber-reinforced pipe during continuous oblique-layer longitudinal-transverse winding is presented. Several types of devices providing the ability to perform continuous filament winding automation have been studied. Mathematical equations for the control parameters of these devices depending on the technological parameters of the winding process are obtained. The possibility of forming a pipe wall thickening in given areas while maintaining the reinforcement structure is shown. Examples of created automated continuous pipe winding equipment are given. A two-level CNC system with coupled control is used to control the equipment. The proposed solutions ensure stable reproduction of the reinforcement structure in modern pipe production conditions.\",\"PeriodicalId\":52126,\"journal\":{\"name\":\"International Journal of Mechatronics and Applied Mechanics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechatronics and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17683/ijomam/issue14.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechatronics and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17683/ijomam/issue14.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

- 玻璃纤维复合材料在许多方面解决了各行各业和市政服务中管道的运行和维护问题。连续长丝缠绕是一种自动化程度很高的渐进式生产方法。在设计产品结构时,有必要考虑到所用缠绕方法的技术参数的复杂影响。我们要考虑的实际问题是,如何制造绕线产品可连续轴向移动的专用设备。连续卷绕可确保产品结构在整个长度上保持不变。介绍了在连续斜层纵横向缠绕过程中纤维增强管结构形成模型的研究。研究了几种能够自动进行连续长丝缠绕的设备。根据缠绕工艺的技术参数,获得了这些设备控制参数的数学公式。显示了在保持加固结构的同时在特定区域形成管壁增厚的可能性。给出了已创建的自动连续管道缠绕设备的示例。设备的控制采用了耦合控制的两级数控系统。所提出的解决方案可确保在现代管道生产条件下稳定地再现加固结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FIBERGLASS PIPELINE CONTINUOUS FILAMENT WINDING AUTOMATION
– The fiberglass composite materials in many ways solve the problems of operation and maintenance of pipelines in various industries and municipal services. Continuous filament winding is a progressive production method with a high degree of automation. It is necessary to take into account the complex influence of the technological parameters of the used winding method when designing the product structure. The actual problem of creating specialized equipment with continuous axial movement of the wound product is considered. Continuous winding ensures a constant product structure along its entire length. A study of a model for the formation of the structure of a fiber-reinforced pipe during continuous oblique-layer longitudinal-transverse winding is presented. Several types of devices providing the ability to perform continuous filament winding automation have been studied. Mathematical equations for the control parameters of these devices depending on the technological parameters of the winding process are obtained. The possibility of forming a pipe wall thickening in given areas while maintaining the reinforcement structure is shown. Examples of created automated continuous pipe winding equipment are given. A two-level CNC system with coupled control is used to control the equipment. The proposed solutions ensure stable reproduction of the reinforcement structure in modern pipe production conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechatronics and Applied Mechanics
International Journal of Mechatronics and Applied Mechanics Materials Science-Materials Science (all)
CiteScore
0.80
自引率
0.00%
发文量
43
期刊介绍: International Journal of Mechatronics and Applied Mechanics is a publication dedicated to the global advancements of mechatronics and applied mechanics research, development and innovation, providing researchers and practitioners with the occasion to publish papers of excellent theoretical value on applied research. It provides rapid publishing deadlines and it constitutes a place for academics and scholars where they can exchange meaningful information and productive ideas associated with these domains.
期刊最新文献
TRENDS, CHALLENGES AND OPPORTUNITIES OF DIGITAL MANUFACTURING IN THE AGE OF INDUSTRY 4.0 MODELLING AND SIMULATION OF A PICK&PLACE SYSTEM USING MODELICA MODELLING LANGUAGE AND AN INVERSE KINEMATICS APPROACH ADVANCEMENTS IN CELLULOSE/REDUCED GRAPHENE OXIDE COMPOSITES: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS IN TRANSISTOR TECHNOLOGIES THE RESULTS OF SURFACE WASTEWATER TREATMENT OF A MACHINE-BUILDING ENTERPRISE FROM PETROLEUM PRODUCT CONTAMINATION DEVELOPMENT OF A MODULAR SLOTTING HEAD WITH A MODIFIED RACK-AND-PINION TRANSMISSION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1