{"title":"存在非线性场时五级原子系统的量子相干性和纠缠性","authors":"Sayed Abdel-Khaled","doi":"10.1051/jeos/2023044","DOIUrl":null,"url":null,"abstract":"We investigate the atom−field system in the framework of harmonic oscillators based on deformed Heisenberg algebras. We explore the dynamic characteristics of the considered system under the effect of a nonlinear field. In particular, we consider the atomic population, atomic coherence, and atom−field entanglement for a system that comprises a single five−level atom interacting with a single−mode nonlinear field when the deformation effect is taken into account. We examine the time evolution of the quantum quantifiers in the presence of deformation when the initial state of the quantized field is defined to be a nonlinear coherent state (CS) or a superposition state","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum coherence and entanglement of the system of a five−level atom in the presence of nonlinear fields\",\"authors\":\"Sayed Abdel-Khaled\",\"doi\":\"10.1051/jeos/2023044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the atom−field system in the framework of harmonic oscillators based on deformed Heisenberg algebras. We explore the dynamic characteristics of the considered system under the effect of a nonlinear field. In particular, we consider the atomic population, atomic coherence, and atom−field entanglement for a system that comprises a single five−level atom interacting with a single−mode nonlinear field when the deformation effect is taken into account. We examine the time evolution of the quantum quantifiers in the presence of deformation when the initial state of the quantized field is defined to be a nonlinear coherent state (CS) or a superposition state\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023044\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023044","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Quantum coherence and entanglement of the system of a five−level atom in the presence of nonlinear fields
We investigate the atom−field system in the framework of harmonic oscillators based on deformed Heisenberg algebras. We explore the dynamic characteristics of the considered system under the effect of a nonlinear field. In particular, we consider the atomic population, atomic coherence, and atom−field entanglement for a system that comprises a single five−level atom interacting with a single−mode nonlinear field when the deformation effect is taken into account. We examine the time evolution of the quantum quantifiers in the presence of deformation when the initial state of the quantized field is defined to be a nonlinear coherent state (CS) or a superposition state
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.