Sigit Purwanto, Bayu Novariawan, Suparman, Palupi Tri Widiyanti, Isnaini Pratiwiningrum, Fitri Nur Kayati
{"title":"发酵淀粉生产工艺的 CFD 分析与搅拌罐设计开发","authors":"Sigit Purwanto, Bayu Novariawan, Suparman, Palupi Tri Widiyanti, Isnaini Pratiwiningrum, Fitri Nur Kayati","doi":"10.37934/cfdl.16.1.95106","DOIUrl":null,"url":null,"abstract":"Stirred tanks are widely used in the industrial world, design and improvements are still being developed, including the stirred fermenter tank. A numerical study was carried out to examine the relationship between experimental and reference and computational analysis, in order to minimize the power consumption of a stirred fermenter tanks and optimize the velocity distribution and its profile in radial and axial direction. Specifically, velocity distribution profile in radial and axial direction and the profile of pressure distribution of an experimental impeller, a flat impeller, and a flat-hole impeller were investigated using Computational Fluid Dynamic (CFD) analysis. It was found that the axial velocity at the top and the bottom of the experimental impeller was highly disparate at around 0.95 m/s, while the flat impeller and the flat-hole impeller experienced a disparity of 0.05 m/s and 0.21 m/s, respectively. In case terms of decreased power, the experimental impeller showed power reduction of 21%, greater than that of the flat-hole impeller configuration of 17%.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Analysis and Development of Mixing Tank Design for The Fermented Starch Production Process\",\"authors\":\"Sigit Purwanto, Bayu Novariawan, Suparman, Palupi Tri Widiyanti, Isnaini Pratiwiningrum, Fitri Nur Kayati\",\"doi\":\"10.37934/cfdl.16.1.95106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stirred tanks are widely used in the industrial world, design and improvements are still being developed, including the stirred fermenter tank. A numerical study was carried out to examine the relationship between experimental and reference and computational analysis, in order to minimize the power consumption of a stirred fermenter tanks and optimize the velocity distribution and its profile in radial and axial direction. Specifically, velocity distribution profile in radial and axial direction and the profile of pressure distribution of an experimental impeller, a flat impeller, and a flat-hole impeller were investigated using Computational Fluid Dynamic (CFD) analysis. It was found that the axial velocity at the top and the bottom of the experimental impeller was highly disparate at around 0.95 m/s, while the flat impeller and the flat-hole impeller experienced a disparity of 0.05 m/s and 0.21 m/s, respectively. In case terms of decreased power, the experimental impeller showed power reduction of 21%, greater than that of the flat-hole impeller configuration of 17%.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.1.95106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.1.95106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
搅拌罐广泛应用于工业领域,其设计和改进仍在不断发展,其中包括搅拌发酵罐。为了最大限度地降低搅拌发酵罐的能耗,优化径向和轴向的速度分布及其轮廓,我们开展了一项数值研究,以检验实验和参考与计算分析之间的关系。具体而言,利用计算流体动力学(CFD)分析方法研究了实验叶轮、平面叶轮和平孔叶轮的径向和轴向速度分布轮廓以及压力分布轮廓。结果发现,实验叶轮顶部和底部的轴向速度相差很大,约为 0.95 m/s,而扁平叶轮和平孔叶轮分别相差 0.05 m/s 和 0.21 m/s。在功率降低方面,实验叶轮的功率降低了 21%,高于平孔叶轮的 17%。
CFD Analysis and Development of Mixing Tank Design for The Fermented Starch Production Process
Stirred tanks are widely used in the industrial world, design and improvements are still being developed, including the stirred fermenter tank. A numerical study was carried out to examine the relationship between experimental and reference and computational analysis, in order to minimize the power consumption of a stirred fermenter tanks and optimize the velocity distribution and its profile in radial and axial direction. Specifically, velocity distribution profile in radial and axial direction and the profile of pressure distribution of an experimental impeller, a flat impeller, and a flat-hole impeller were investigated using Computational Fluid Dynamic (CFD) analysis. It was found that the axial velocity at the top and the bottom of the experimental impeller was highly disparate at around 0.95 m/s, while the flat impeller and the flat-hole impeller experienced a disparity of 0.05 m/s and 0.21 m/s, respectively. In case terms of decreased power, the experimental impeller showed power reduction of 21%, greater than that of the flat-hole impeller configuration of 17%.