基于正面照片的卷积神经网络方法在人类性别识别中的应用

Aqil Muhammad, D. Pratiwi, Agus Salim
{"title":"基于正面照片的卷积神经网络方法在人类性别识别中的应用","authors":"Aqil Muhammad, D. Pratiwi, Agus Salim","doi":"10.31603/komtika.v7i2.9937","DOIUrl":null,"url":null,"abstract":"Recognition is one of the many problems encountered today, this problem has several ways to be solved. This research used Convolutional Neural Networks (CNN), which is a deep neural networks method as a means of face recognition, which has been proven to be widely used in face classification, using a dataset of male and female facial photos totaling 27,167 photos, of which 17,678 are male and 9,489 are male. woman. To avoid unbalanced data processing, the researchers disguised the photos of women and men so that the total photos used for the training amounted to 18,978 photos. Besides that, the researcher also added dropout as a test parameter. The author uses python to implement gender differences in the images in the data that has been prepared. For the preparation of the Convolutional Neural Networks model architecture the authors use several layers. Then the data will be trained before being tested with new data that has been prepared where the new data for testing is divided into two datasets to see if there are differences in accuracy results. What distinguishes the two datasets is the position of the photo and the background of the photo. Of the two existing datasets, the first dataset produces an average of 73.33%, while the second dataset produces the highest 84.34%.","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Metode Convolutional Neural Networks pada Pengenalan Gender Manusia berdasarkan Foto Tampak Depan\",\"authors\":\"Aqil Muhammad, D. Pratiwi, Agus Salim\",\"doi\":\"10.31603/komtika.v7i2.9937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition is one of the many problems encountered today, this problem has several ways to be solved. This research used Convolutional Neural Networks (CNN), which is a deep neural networks method as a means of face recognition, which has been proven to be widely used in face classification, using a dataset of male and female facial photos totaling 27,167 photos, of which 17,678 are male and 9,489 are male. woman. To avoid unbalanced data processing, the researchers disguised the photos of women and men so that the total photos used for the training amounted to 18,978 photos. Besides that, the researcher also added dropout as a test parameter. The author uses python to implement gender differences in the images in the data that has been prepared. For the preparation of the Convolutional Neural Networks model architecture the authors use several layers. Then the data will be trained before being tested with new data that has been prepared where the new data for testing is divided into two datasets to see if there are differences in accuracy results. What distinguishes the two datasets is the position of the photo and the background of the photo. Of the two existing datasets, the first dataset produces an average of 73.33%, while the second dataset produces the highest 84.34%.\",\"PeriodicalId\":292404,\"journal\":{\"name\":\"Jurnal Komtika (Komputasi dan Informatika)\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Komtika (Komputasi dan Informatika)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31603/komtika.v7i2.9937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/komtika.v7i2.9937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别是当今遇到的众多问题之一,这个问题有多种解决方法。这项研究使用卷积神经网络(CNN)作为人脸识别手段,这是一种深度神经网络方法,已被证明广泛应用于人脸分类,使用的数据集是男性和女性面部照片,共计 27 167 张,其中男性 17 678 张,男性和女性 9489 张。为了避免数据处理的不平衡,研究人员对女性和男性的照片进行了伪装,这样用于训练的照片总数就达到了 18 978 张。除此之外,研究人员还添加了辍学率作为测试参数。作者使用 python 来实现已准备好的数据中图像的性别差异。在准备卷积神经网络模型架构时,作者使用了多个层。然后,先对数据进行训练,再用准备好的新数据进行测试,其中用于测试的新数据被分为两个数据集,以观察准确率结果是否存在差异。这两个数据集的区别在于照片的位置和背景。在现有的两个数据集中,第一个数据集的平均准确率为 73.33%,而第二个数据集的最高准确率为 84.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penerapan Metode Convolutional Neural Networks pada Pengenalan Gender Manusia berdasarkan Foto Tampak Depan
Recognition is one of the many problems encountered today, this problem has several ways to be solved. This research used Convolutional Neural Networks (CNN), which is a deep neural networks method as a means of face recognition, which has been proven to be widely used in face classification, using a dataset of male and female facial photos totaling 27,167 photos, of which 17,678 are male and 9,489 are male. woman. To avoid unbalanced data processing, the researchers disguised the photos of women and men so that the total photos used for the training amounted to 18,978 photos. Besides that, the researcher also added dropout as a test parameter. The author uses python to implement gender differences in the images in the data that has been prepared. For the preparation of the Convolutional Neural Networks model architecture the authors use several layers. Then the data will be trained before being tested with new data that has been prepared where the new data for testing is divided into two datasets to see if there are differences in accuracy results. What distinguishes the two datasets is the position of the photo and the background of the photo. Of the two existing datasets, the first dataset produces an average of 73.33%, while the second dataset produces the highest 84.34%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisa Pengukuran Tingkat Kepuasan Pengguna Aplikasi Daytrans Dengan Kerangka Kerja Pieces Framework Analysis of User Experience on the MyPertamina Application using User Experience Questionnaire Method Monitoring dan Klasifikasi Kualitas Air Kolam Ikan Gurami Berbasis Internet of Things Menggunakan Metode Naive Bayes Evaluation of Maturity Level and Recommendations for Improvement of Software Testing Process Based on Test Maturity Model Integration (TMMi): A Case Study Analisis dan Penanganan Insiden Siber SQL Injection Menggunakan Kerangka NIST SP 800-61R2 dan Algoritma Klusterisasi K-Means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1