利用耦合硅微透镜的混合模式实现低阈值布里渊激光

Yong Hu, Shaoliang Yu, Qingyang Du, Xiaoshun Jiang
{"title":"利用耦合硅微透镜的混合模式实现低阈值布里渊激光","authors":"Yong Hu, Shaoliang Yu, Qingyang Du, Xiaoshun Jiang","doi":"10.1117/12.2686831","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrated a stimulated Brillouin laser with hybrid modes, utilizing two coupled silica microtoroid cavities. The first cavity consists of paired modes with a frequency difference close, but not exactly equal, to its Brillouin frequency shift. The second cavity has a resonant mode that is close to one of the modes of the first cavity. The strong coupling between the two similar frequency modes induces mode splitting, resulting in the generation of a hybrid paired mode. This hybrid mode comprises one eigenmode from the first cavity and the super-modes of the coupled microtoroids. By finely tuning the coupling strength to match the frequency difference between the paired modes and the Brillouin shift, we achieve Brillouin lasing. Furthermore, the offset of the frequency shifting in the hybrid modes configuration is much smaller than the Brillouin frequency shift, significantly reducing coupling loss and enabling the realization of a lowthreshold Brillouin laser. We experimentally observed a lasing threshold as low as 0.45 mW, which is two orders of magnitude lower than that of the direct super-modes frequency matching method. This novel approach relaxes the strict requirement of exact frequency matching conditions for Brillouin lasing, making it an excellent platform for compact and ultra-low threshold Brillouin lasers.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"26 1","pages":"127730P - 127730P-3"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low threshold Brillouin lasing with hybrid modes of coupled silica microtoroids\",\"authors\":\"Yong Hu, Shaoliang Yu, Qingyang Du, Xiaoshun Jiang\",\"doi\":\"10.1117/12.2686831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrated a stimulated Brillouin laser with hybrid modes, utilizing two coupled silica microtoroid cavities. The first cavity consists of paired modes with a frequency difference close, but not exactly equal, to its Brillouin frequency shift. The second cavity has a resonant mode that is close to one of the modes of the first cavity. The strong coupling between the two similar frequency modes induces mode splitting, resulting in the generation of a hybrid paired mode. This hybrid mode comprises one eigenmode from the first cavity and the super-modes of the coupled microtoroids. By finely tuning the coupling strength to match the frequency difference between the paired modes and the Brillouin shift, we achieve Brillouin lasing. Furthermore, the offset of the frequency shifting in the hybrid modes configuration is much smaller than the Brillouin frequency shift, significantly reducing coupling loss and enabling the realization of a lowthreshold Brillouin laser. We experimentally observed a lasing threshold as low as 0.45 mW, which is two orders of magnitude lower than that of the direct super-modes frequency matching method. This novel approach relaxes the strict requirement of exact frequency matching conditions for Brillouin lasing, making it an excellent platform for compact and ultra-low threshold Brillouin lasers.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"26 1\",\"pages\":\"127730P - 127730P-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用两个耦合的二氧化硅微陀螺腔,实验演示了具有混合模式的受激布里渊激光器。第一个空腔由成对模式组成,其频率差接近但不完全等于布里渊频移。第二个空腔的谐振模式与第一个空腔的一个模式相近。两个频率相近的模式之间的强耦合会导致模式分裂,从而产生混合配对模式。这种混合模式包括来自第一个空腔的一个特征模式和耦合微透镜的超模式。通过微调耦合强度以匹配配对模式和布里渊偏移之间的频率差,我们实现了布里渊激光。此外,混合模式配置中的频移偏移远小于布里渊频移,从而大大降低了耦合损耗,实现了低阈值布里渊激光器。我们在实验中观测到的激光阈值低至 0.45 mW,比直接超模频率匹配法低两个数量级。这种新方法放宽了布里渊激光对精确频率匹配条件的严格要求,是实现紧凑型超低阈值布里渊激光器的绝佳平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low threshold Brillouin lasing with hybrid modes of coupled silica microtoroids
We experimentally demonstrated a stimulated Brillouin laser with hybrid modes, utilizing two coupled silica microtoroid cavities. The first cavity consists of paired modes with a frequency difference close, but not exactly equal, to its Brillouin frequency shift. The second cavity has a resonant mode that is close to one of the modes of the first cavity. The strong coupling between the two similar frequency modes induces mode splitting, resulting in the generation of a hybrid paired mode. This hybrid mode comprises one eigenmode from the first cavity and the super-modes of the coupled microtoroids. By finely tuning the coupling strength to match the frequency difference between the paired modes and the Brillouin shift, we achieve Brillouin lasing. Furthermore, the offset of the frequency shifting in the hybrid modes configuration is much smaller than the Brillouin frequency shift, significantly reducing coupling loss and enabling the realization of a lowthreshold Brillouin laser. We experimentally observed a lasing threshold as low as 0.45 mW, which is two orders of magnitude lower than that of the direct super-modes frequency matching method. This novel approach relaxes the strict requirement of exact frequency matching conditions for Brillouin lasing, making it an excellent platform for compact and ultra-low threshold Brillouin lasers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1