M. O. Selbesoğlu, M. Karabulut, Özgün Oktar, Burak Akpinar, Oleg Vassilev, Mehmet Arkali, Şeyma Nur Tufan, Alptuğ Şeref Ayyildiz, Esra Günaydin, Atilla Yilmaz, Doğaç Baybars Işiler, B. Özsoy
{"title":"基于南极马蹄岛无人机-GPR 的冰川深度监测精度评估","authors":"M. O. Selbesoğlu, M. Karabulut, Özgün Oktar, Burak Akpinar, Oleg Vassilev, Mehmet Arkali, Şeyma Nur Tufan, Alptuğ Şeref Ayyildiz, Esra Günaydin, Atilla Yilmaz, Doğaç Baybars Işiler, B. Özsoy","doi":"10.55730/1300-0985.1889","DOIUrl":null,"url":null,"abstract":": Unmanned aerial systems have a wide range of uses in studying the impacts of climate change over several fields. Recently, its combination with a ground-penetrating radar (GPR) technology has been demonstrated to be highly effective for surveying glaciers, especially in difficult and inaccessible terrains like Antarctica. In this context, this study focused on exploring the potential of using an unmanned aerial vehicle (UAV)-GPR to measure the depth of glaciers on Horseshoe Island, West Antarctica. The data were collected during the seventh Turkish Antarctic Expedition (TAE-VII) in February and March 2023, within the scope of the international project titled “Glacier monitoring and 3D modeling in Horseshoe Island Antarctica based on UAV-GPR observations”, carried out by the bilateral cooperation of İstanbul Technical University and the Bulgarian Academy of Sciences. In order to determine the depth of the glacier, this investigation utilized both terrestrial GPR and UAV-GPR data. The UAV-GPR depth was determined as 9 cm root mean square error as a consequence of comparison with terrestrial GPR results. Furthermore, it was demonstrated that measurements performed with the UAV were completed approximately 25 times faster than those conducted with the terrestrial GPR, demonstrating a significant efficiency benefit. As a result, it can be concluded that using the airborne GPR approach offers a beneficial and effective way to undertake surveys of glaciers quickly and affordably with promising accuracy.","PeriodicalId":49411,"journal":{"name":"Turkish Journal of Earth Sciences","volume":"60 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy assessment of glacier depth monitoring based on UAV-GPR on Horseshoe Island, Antarctica\",\"authors\":\"M. O. Selbesoğlu, M. Karabulut, Özgün Oktar, Burak Akpinar, Oleg Vassilev, Mehmet Arkali, Şeyma Nur Tufan, Alptuğ Şeref Ayyildiz, Esra Günaydin, Atilla Yilmaz, Doğaç Baybars Işiler, B. Özsoy\",\"doi\":\"10.55730/1300-0985.1889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Unmanned aerial systems have a wide range of uses in studying the impacts of climate change over several fields. Recently, its combination with a ground-penetrating radar (GPR) technology has been demonstrated to be highly effective for surveying glaciers, especially in difficult and inaccessible terrains like Antarctica. In this context, this study focused on exploring the potential of using an unmanned aerial vehicle (UAV)-GPR to measure the depth of glaciers on Horseshoe Island, West Antarctica. The data were collected during the seventh Turkish Antarctic Expedition (TAE-VII) in February and March 2023, within the scope of the international project titled “Glacier monitoring and 3D modeling in Horseshoe Island Antarctica based on UAV-GPR observations”, carried out by the bilateral cooperation of İstanbul Technical University and the Bulgarian Academy of Sciences. In order to determine the depth of the glacier, this investigation utilized both terrestrial GPR and UAV-GPR data. The UAV-GPR depth was determined as 9 cm root mean square error as a consequence of comparison with terrestrial GPR results. Furthermore, it was demonstrated that measurements performed with the UAV were completed approximately 25 times faster than those conducted with the terrestrial GPR, demonstrating a significant efficiency benefit. As a result, it can be concluded that using the airborne GPR approach offers a beneficial and effective way to undertake surveys of glaciers quickly and affordably with promising accuracy.\",\"PeriodicalId\":49411,\"journal\":{\"name\":\"Turkish Journal of Earth Sciences\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0985.1889\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.55730/1300-0985.1889","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Accuracy assessment of glacier depth monitoring based on UAV-GPR on Horseshoe Island, Antarctica
: Unmanned aerial systems have a wide range of uses in studying the impacts of climate change over several fields. Recently, its combination with a ground-penetrating radar (GPR) technology has been demonstrated to be highly effective for surveying glaciers, especially in difficult and inaccessible terrains like Antarctica. In this context, this study focused on exploring the potential of using an unmanned aerial vehicle (UAV)-GPR to measure the depth of glaciers on Horseshoe Island, West Antarctica. The data were collected during the seventh Turkish Antarctic Expedition (TAE-VII) in February and March 2023, within the scope of the international project titled “Glacier monitoring and 3D modeling in Horseshoe Island Antarctica based on UAV-GPR observations”, carried out by the bilateral cooperation of İstanbul Technical University and the Bulgarian Academy of Sciences. In order to determine the depth of the glacier, this investigation utilized both terrestrial GPR and UAV-GPR data. The UAV-GPR depth was determined as 9 cm root mean square error as a consequence of comparison with terrestrial GPR results. Furthermore, it was demonstrated that measurements performed with the UAV were completed approximately 25 times faster than those conducted with the terrestrial GPR, demonstrating a significant efficiency benefit. As a result, it can be concluded that using the airborne GPR approach offers a beneficial and effective way to undertake surveys of glaciers quickly and affordably with promising accuracy.
期刊介绍:
The Turkish Journal of Earth Sciences is published electronically 6 times a year by the Scientific and Technological Research
Council of Turkey (TÜBİTAK). It is an international English-language journal for the publication of significant original recent
research in a wide spectrum of topics in the earth sciences, such as geology, structural geology, tectonics, sedimentology,
geochemistry, geochronology, paleontology, igneous and metamorphic petrology, mineralogy, biostratigraphy, geophysics,
geomorphology, paleoecology and oceanography, and mineral deposits. Contribution is open to researchers of all nationalities.