基于畸变抑制复合透镜和预校正编码图像的高性能 3D 光场显示器

Xinzhu Sang, Xudong Wen, Xin Gao, Xunbo Yu
{"title":"基于畸变抑制复合透镜和预校正编码图像的高性能 3D 光场显示器","authors":"Xinzhu Sang, Xudong Wen, Xin Gao, Xunbo Yu","doi":"10.1117/12.2688607","DOIUrl":null,"url":null,"abstract":"For an advanced three-dimensional (3D) light field display, the 3D image information with correct spatial occlusion relation should be provided in a large viewing angle range. However, the optical distortion and the structural error are two key factors of the deterioration in image quality, which cause the serious deformation of 3D images, especially in large viewing angle. Here, the light path of spatial voxel is analyzed. The mathematical relationship between optical system parameters and spatial voxel positions is achieved. The aberration theory is used to analyze the optical distortion of single lenses. Due to the influence of optical distortion, the angle of the emitted light deviates from the ideal direction, which leads to the deviation of spatial voxel positions. The compound lens with aperture-stop is designed to suppress the optical distortion. The optical performance of optimized compound lens is evaluated. In order to further suppress the residual optical distortion and the structural error, a pre-correction method with the detection of optical path error is proposed. The correspondence between the pixel of display source and the spatial voxel is obtained. Based on the designed compound lens and pre-correction encoded image, a 3D light field display system is constructed. Experimental results demonstrates that the proposed method suppresses the optical distortion and the structural error. An undeformed 3D image with the viewing angle above 100 degrees can be achieved, which can find potential applications in biomedical imaging and visualization to enhance medical analysis and diagnosis.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"115 1","pages":"1276507 - 1276507-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance 3D light field display based on distortion suppressed compound lens and pre-correction encoded image\",\"authors\":\"Xinzhu Sang, Xudong Wen, Xin Gao, Xunbo Yu\",\"doi\":\"10.1117/12.2688607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an advanced three-dimensional (3D) light field display, the 3D image information with correct spatial occlusion relation should be provided in a large viewing angle range. However, the optical distortion and the structural error are two key factors of the deterioration in image quality, which cause the serious deformation of 3D images, especially in large viewing angle. Here, the light path of spatial voxel is analyzed. The mathematical relationship between optical system parameters and spatial voxel positions is achieved. The aberration theory is used to analyze the optical distortion of single lenses. Due to the influence of optical distortion, the angle of the emitted light deviates from the ideal direction, which leads to the deviation of spatial voxel positions. The compound lens with aperture-stop is designed to suppress the optical distortion. The optical performance of optimized compound lens is evaluated. In order to further suppress the residual optical distortion and the structural error, a pre-correction method with the detection of optical path error is proposed. The correspondence between the pixel of display source and the spatial voxel is obtained. Based on the designed compound lens and pre-correction encoded image, a 3D light field display system is constructed. Experimental results demonstrates that the proposed method suppresses the optical distortion and the structural error. An undeformed 3D image with the viewing angle above 100 degrees can be achieved, which can find potential applications in biomedical imaging and visualization to enhance medical analysis and diagnosis.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"115 1\",\"pages\":\"1276507 - 1276507-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2688607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2688607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要实现先进的三维(3D)光场显示,必须在大视角范围内提供具有正确空间遮挡关系的三维图像信息。然而,光学畸变和结构误差是导致图像质量下降的两个关键因素,它们会造成三维图像的严重变形,尤其是在大视角下。本文分析了空间体素的光路。实现了光学系统参数与空间体素位置之间的数学关系。畸变理论用于分析单透镜的光学畸变。由于光学畸变的影响,出射光线的角度偏离理想方向,从而导致空间体素位置的偏差。为了抑制光学畸变,设计了带光圈挡片的复合透镜。对优化后的复合透镜的光学性能进行了评估。为了进一步抑制残余光学失真和结构误差,提出了一种检测光路误差的预校正方法。获得了显示源像素与空间体素之间的对应关系。基于设计的复合透镜和预校正编码图像,构建了三维光场显示系统。实验结果表明,所提出的方法抑制了光学畸变和结构误差。可以获得视角在 100 度以上的无变形三维图像,这在生物医学成像和可视化中具有潜在的应用价值,可提高医学分析和诊断的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance 3D light field display based on distortion suppressed compound lens and pre-correction encoded image
For an advanced three-dimensional (3D) light field display, the 3D image information with correct spatial occlusion relation should be provided in a large viewing angle range. However, the optical distortion and the structural error are two key factors of the deterioration in image quality, which cause the serious deformation of 3D images, especially in large viewing angle. Here, the light path of spatial voxel is analyzed. The mathematical relationship between optical system parameters and spatial voxel positions is achieved. The aberration theory is used to analyze the optical distortion of single lenses. Due to the influence of optical distortion, the angle of the emitted light deviates from the ideal direction, which leads to the deviation of spatial voxel positions. The compound lens with aperture-stop is designed to suppress the optical distortion. The optical performance of optimized compound lens is evaluated. In order to further suppress the residual optical distortion and the structural error, a pre-correction method with the detection of optical path error is proposed. The correspondence between the pixel of display source and the spatial voxel is obtained. Based on the designed compound lens and pre-correction encoded image, a 3D light field display system is constructed. Experimental results demonstrates that the proposed method suppresses the optical distortion and the structural error. An undeformed 3D image with the viewing angle above 100 degrees can be achieved, which can find potential applications in biomedical imaging and visualization to enhance medical analysis and diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1