基于点-多边形混合法的计算机生成全息图渲染和加速技术的进步

Fan Wang, David Blinder, T. Ito, T. Shimobaba
{"title":"基于点-多边形混合法的计算机生成全息图渲染和加速技术的进步","authors":"Fan Wang, David Blinder, T. Ito, T. Shimobaba","doi":"10.1117/12.2684721","DOIUrl":null,"url":null,"abstract":"We have developed a novel point-polygon hybrid method (PPHM) for calculating computer-generated holograms (CGHs), which takes advantage of both point-based and polygon-based methods. While point-based methods are good at presenting object details, polygon-based methods are good at efficiently rendering high-density surfaces with accurate occlusion. The PPHM algorithm combines the strengths of both methods and eliminates their weaknesses to achieve higher computational efficiency. It utilizes a low-polygon approximation of the original 3D polygonal meshes and leverages the computational advantages of the wavefront recording plane and look-up table methods to generate high-resolution holograms with smooth focal cues quickly. The proposed PPHM algorithm is validated to present continuous depth cues and accurate occlusion with fewer triangles, implying high computational efficiency without quality loss.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"25 1","pages":"1276508 - 1276508-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in computer-generated hologram for rendering and acceleration based on the point-polygon hybrid method\",\"authors\":\"Fan Wang, David Blinder, T. Ito, T. Shimobaba\",\"doi\":\"10.1117/12.2684721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a novel point-polygon hybrid method (PPHM) for calculating computer-generated holograms (CGHs), which takes advantage of both point-based and polygon-based methods. While point-based methods are good at presenting object details, polygon-based methods are good at efficiently rendering high-density surfaces with accurate occlusion. The PPHM algorithm combines the strengths of both methods and eliminates their weaknesses to achieve higher computational efficiency. It utilizes a low-polygon approximation of the original 3D polygonal meshes and leverages the computational advantages of the wavefront recording plane and look-up table methods to generate high-resolution holograms with smooth focal cues quickly. The proposed PPHM algorithm is validated to present continuous depth cues and accurate occlusion with fewer triangles, implying high computational efficiency without quality loss.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"25 1\",\"pages\":\"1276508 - 1276508-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2684721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2684721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种新颖的点-多边形混合方法(PPHM),用于计算计算机生成的全息图(CGH),这种方法同时利用了基于点的方法和基于多边形的方法的优势。基于点的方法善于呈现物体的细节,而基于多边形的方法则善于高效地呈现具有精确遮挡的高密度表面。PPHM 算法结合了这两种方法的优点,并消除了它们的缺点,从而实现了更高的计算效率。它利用低多边形近似原始三维多边形网格,并利用波前记录平面和查找表方法的计算优势,快速生成具有平滑焦点线索的高分辨率全息图。经过验证,所提出的 PPHM 算法能以较少的三角形呈现连续的深度线索和精确的遮挡,这意味着计算效率高而不会造成质量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in computer-generated hologram for rendering and acceleration based on the point-polygon hybrid method
We have developed a novel point-polygon hybrid method (PPHM) for calculating computer-generated holograms (CGHs), which takes advantage of both point-based and polygon-based methods. While point-based methods are good at presenting object details, polygon-based methods are good at efficiently rendering high-density surfaces with accurate occlusion. The PPHM algorithm combines the strengths of both methods and eliminates their weaknesses to achieve higher computational efficiency. It utilizes a low-polygon approximation of the original 3D polygonal meshes and leverages the computational advantages of the wavefront recording plane and look-up table methods to generate high-resolution holograms with smooth focal cues quickly. The proposed PPHM algorithm is validated to present continuous depth cues and accurate occlusion with fewer triangles, implying high computational efficiency without quality loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1