Dmitry V. Kudashkin, Michael Sumetsky, Ilya D. Vatnik
{"title":"通过高微米线加热制造 SNAP 微谐振器设备","authors":"Dmitry V. Kudashkin, Michael Sumetsky, Ilya D. Vatnik","doi":"10.1117/12.2686256","DOIUrl":null,"url":null,"abstract":"In this work we present a novel technique to fabricate whispering gallery modes microresonators on the regular optical fiber surface. We use a high-resistance wire heated by constant electrical current up to temperatures of 1100 °C. Due to higher temperature stability, high reproducibility of the microcavities shaping is ensured. Our method makes it possible to reduce the cost and simplify the production of WGM microresonators on the optical fiber surface.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"38 3","pages":"127730M - 127730M-3"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of the SNAP microresonator devices by high-ohmic wire heating\",\"authors\":\"Dmitry V. Kudashkin, Michael Sumetsky, Ilya D. Vatnik\",\"doi\":\"10.1117/12.2686256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a novel technique to fabricate whispering gallery modes microresonators on the regular optical fiber surface. We use a high-resistance wire heated by constant electrical current up to temperatures of 1100 °C. Due to higher temperature stability, high reproducibility of the microcavities shaping is ensured. Our method makes it possible to reduce the cost and simplify the production of WGM microresonators on the optical fiber surface.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"38 3\",\"pages\":\"127730M - 127730M-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of the SNAP microresonator devices by high-ohmic wire heating
In this work we present a novel technique to fabricate whispering gallery modes microresonators on the regular optical fiber surface. We use a high-resistance wire heated by constant electrical current up to temperatures of 1100 °C. Due to higher temperature stability, high reproducibility of the microcavities shaping is ensured. Our method makes it possible to reduce the cost and simplify the production of WGM microresonators on the optical fiber surface.