利用射线和波纹工具进行超广角金属膜设计

Li-Ce Hu, Yijun Ding
{"title":"利用射线和波纹工具进行超广角金属膜设计","authors":"Li-Ce Hu, Yijun Ding","doi":"10.1117/12.2686361","DOIUrl":null,"url":null,"abstract":"Designing a metalens of millimeter scale or larger is challenging. We demonstrate how to combine a ray-based automatic design tool with a wave-based inverse design tool to design a mm-size ultra-wide angle metalens imaging system. The ray-based approach parametrizes the distribution of meta-atom design parameters over the surface with a polynomial, and treat the metalens similarly to a grating. The ray-based design tool considers both the transmission and the phase of the meta-atoms as functions of the incident angle. The ray-based approach is fast and robust. It can complete the optimization of a mm-size metalens in a few minutes. This design can then serve as a starting point for a wave-based inverse design tool. The wave-based inverse design tool is applied to further optimize the metalens with arbitrary distribution of meta-atom design parameters. The additional design freedom offered by the arbitrary distribution further increases the light collection efficiency and image resolution. Finally, the design performance is validated with a finite difference time domain (FDTD) algorithm. All analysis results agree well, show that the final ultra-wide angle metalens design is close to diffraction limited. These results demonstrate the effectiveness of our proposed workflow by taking advantage of both the ray-based and the wave-based design tools.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"58 1","pages":"127650D - 127650D-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-wide angle metalens design with ray-based and wave-based tools\",\"authors\":\"Li-Ce Hu, Yijun Ding\",\"doi\":\"10.1117/12.2686361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a metalens of millimeter scale or larger is challenging. We demonstrate how to combine a ray-based automatic design tool with a wave-based inverse design tool to design a mm-size ultra-wide angle metalens imaging system. The ray-based approach parametrizes the distribution of meta-atom design parameters over the surface with a polynomial, and treat the metalens similarly to a grating. The ray-based design tool considers both the transmission and the phase of the meta-atoms as functions of the incident angle. The ray-based approach is fast and robust. It can complete the optimization of a mm-size metalens in a few minutes. This design can then serve as a starting point for a wave-based inverse design tool. The wave-based inverse design tool is applied to further optimize the metalens with arbitrary distribution of meta-atom design parameters. The additional design freedom offered by the arbitrary distribution further increases the light collection efficiency and image resolution. Finally, the design performance is validated with a finite difference time domain (FDTD) algorithm. All analysis results agree well, show that the final ultra-wide angle metalens design is close to diffraction limited. These results demonstrate the effectiveness of our proposed workflow by taking advantage of both the ray-based and the wave-based design tools.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"58 1\",\"pages\":\"127650D - 127650D-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计毫米级或更大的金属膜是一项挑战。我们展示了如何将基于射线的自动设计工具与基于波的逆向设计工具相结合,来设计毫米级超广角金属膜成像系统。基于射线的方法用多项式对元原子设计参数在表面上的分布进行参数化,并将金属膜与光栅进行类似处理。基于射线的设计工具将元原子的传输和相位视为入射角的函数。基于射线的方法既快速又稳健。它可以在几分钟内完成毫米级金属膜的优化。这种设计可以作为基于波的逆向设计工具的起点。基于波的逆向设计工具可用于进一步优化元原子设计参数任意分布的金属膜。任意分布提供的额外设计自由度进一步提高了光收集效率和图像分辨率。最后,使用有限差分时域(FDTD)算法对设计性能进行了验证。所有分析结果一致,表明最终的超广角金属透镜设计接近衍射限制。这些结果表明,我们提出的工作流程同时利用了基于射线和基于波的设计工具,因而非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-wide angle metalens design with ray-based and wave-based tools
Designing a metalens of millimeter scale or larger is challenging. We demonstrate how to combine a ray-based automatic design tool with a wave-based inverse design tool to design a mm-size ultra-wide angle metalens imaging system. The ray-based approach parametrizes the distribution of meta-atom design parameters over the surface with a polynomial, and treat the metalens similarly to a grating. The ray-based design tool considers both the transmission and the phase of the meta-atoms as functions of the incident angle. The ray-based approach is fast and robust. It can complete the optimization of a mm-size metalens in a few minutes. This design can then serve as a starting point for a wave-based inverse design tool. The wave-based inverse design tool is applied to further optimize the metalens with arbitrary distribution of meta-atom design parameters. The additional design freedom offered by the arbitrary distribution further increases the light collection efficiency and image resolution. Finally, the design performance is validated with a finite difference time domain (FDTD) algorithm. All analysis results agree well, show that the final ultra-wide angle metalens design is close to diffraction limited. These results demonstrate the effectiveness of our proposed workflow by taking advantage of both the ray-based and the wave-based design tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1