一般三阶常微分方程的一类等间距点单步混合分块法

M. Orakwelu, O. Otegbeye, Hermane Mambili-mamboundou
{"title":"一般三阶常微分方程的一类等间距点单步混合分块法","authors":"M. Orakwelu, O. Otegbeye, Hermane Mambili-mamboundou","doi":"10.46481/jnsps.2023.1484","DOIUrl":null,"url":null,"abstract":"This study presents a class of single-step, self-starting hybrid block methods for directly solving general third-order ordinary differential equations (ODEs) without reduction to first order equations. The methods are developed through interpolation and collocation at systematically selected evenly spaced nodes with the aim of boosting the accuracy of the methods. The zero stability, consistency and convergence of the algorithms are established. Scalar and systems of linear and nonlinear ODEs are approximated to test the effectiveness of the schemes, and the results obtained are compared against other methods from the literature. Significantly, the study shows that an increase in the number of intra-step points improves the accuracy of the solutions obtained using the proposed methods.","PeriodicalId":342917,"journal":{"name":"Journal of the Nigerian Society of Physical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of single-step hybrid block methods with equally spaced points for general third-order ordinary differential equations\",\"authors\":\"M. Orakwelu, O. Otegbeye, Hermane Mambili-mamboundou\",\"doi\":\"10.46481/jnsps.2023.1484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a class of single-step, self-starting hybrid block methods for directly solving general third-order ordinary differential equations (ODEs) without reduction to first order equations. The methods are developed through interpolation and collocation at systematically selected evenly spaced nodes with the aim of boosting the accuracy of the methods. The zero stability, consistency and convergence of the algorithms are established. Scalar and systems of linear and nonlinear ODEs are approximated to test the effectiveness of the schemes, and the results obtained are compared against other methods from the literature. Significantly, the study shows that an increase in the number of intra-step points improves the accuracy of the solutions obtained using the proposed methods.\",\"PeriodicalId\":342917,\"journal\":{\"name\":\"Journal of the Nigerian Society of Physical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Society of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46481/jnsps.2023.1484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Society of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46481/jnsps.2023.1484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一类单步自启动混合分块方法,用于直接求解一般三阶常微分方程(ODE),而无需还原为一阶方程。这些方法是通过在系统选择的均匀分布节点上进行插值和配位而开发的,目的是提高方法的精度。建立了算法的零稳定性、一致性和收敛性。对线性和非线性 ODEs 的标量和系统进行了近似,以检验方案的有效性,并将所得结果与文献中的其他方法进行了比较。值得注意的是,研究表明,增加步内点的数量可以提高使用所提方法求解的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A class of single-step hybrid block methods with equally spaced points for general third-order ordinary differential equations
This study presents a class of single-step, self-starting hybrid block methods for directly solving general third-order ordinary differential equations (ODEs) without reduction to first order equations. The methods are developed through interpolation and collocation at systematically selected evenly spaced nodes with the aim of boosting the accuracy of the methods. The zero stability, consistency and convergence of the algorithms are established. Scalar and systems of linear and nonlinear ODEs are approximated to test the effectiveness of the schemes, and the results obtained are compared against other methods from the literature. Significantly, the study shows that an increase in the number of intra-step points improves the accuracy of the solutions obtained using the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal control with the effects of ivermectin and livestock availability on malaria transmission Data safety prediction using YOLOv7+G3HN for traffic roads Novel way to predict stock movements using multiple models and comprehensive analysis: leveraging voting meta-ensemble techniques Analysis of support vector machine and random forest models for predicting the scalability of a broadband network Investigations on the structural, vibrational, optical and photocatalytic behavior of CuO, MnO and CuMnO nanomaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1