飞秒激光纳米结构硅薄膜用于光学信息加密

Sergey A. Syubaev
{"title":"飞秒激光纳米结构硅薄膜用于光学信息加密","authors":"Sergey A. Syubaev","doi":"10.1117/12.2688543","DOIUrl":null,"url":null,"abstract":"Pulsed laser processing matures as a powerful technique for flexible and high-performing nanostructuration. Rich physics behind the light-matter interaction allows to produce unique surface nanotextures with desired properties, beneficial for various practically-relevant applications such as optical sensing, anti-counterfeiting, realization of nanophotonic platforms and so on. Here we have applied direct femtosecond-laser printing to locally fabricate nanostructures on glass-supported amorphous-silicon thin film for realization of high-resolution (up to 60 000 dots per inch) security labels offering full-optical information encryption in several ways. Since the proposed tag represents array of close-packed amorphous-silicon hemispherical nanoparticles, the first approach for information encryption is to selectively crystallize some of nanoparticles by continuous-wave laser irradiation without morphological changes. Thus, crystalized nanoparticles ordered in a user-defined way indicate encrypted information that can be read using Raman signal intensity mapping at frequency of 519 cm−1, corresponding to the main phonon mode of crystalline silicon. The second way is to hide Mie-resonant nanoparticles between non-resonant ones. Since the latter haven’t proper size to resonantly interact with pump radiation during Raman signal mapping, encrypted information can be revealed via evident variation in Raman yield between resonant and non-resonant nanoparticles. Thereby, we demonstrated facile single step printing of anti-counterfeiting labels at resolution up to 60 000 dots per inch justifying the applicability of the developed approach for optical information encryption.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"120 1","pages":"127730J - 127730J-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond-laser nanostructuring of silicon thin films for optical information encryption\",\"authors\":\"Sergey A. Syubaev\",\"doi\":\"10.1117/12.2688543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed laser processing matures as a powerful technique for flexible and high-performing nanostructuration. Rich physics behind the light-matter interaction allows to produce unique surface nanotextures with desired properties, beneficial for various practically-relevant applications such as optical sensing, anti-counterfeiting, realization of nanophotonic platforms and so on. Here we have applied direct femtosecond-laser printing to locally fabricate nanostructures on glass-supported amorphous-silicon thin film for realization of high-resolution (up to 60 000 dots per inch) security labels offering full-optical information encryption in several ways. Since the proposed tag represents array of close-packed amorphous-silicon hemispherical nanoparticles, the first approach for information encryption is to selectively crystallize some of nanoparticles by continuous-wave laser irradiation without morphological changes. Thus, crystalized nanoparticles ordered in a user-defined way indicate encrypted information that can be read using Raman signal intensity mapping at frequency of 519 cm−1, corresponding to the main phonon mode of crystalline silicon. The second way is to hide Mie-resonant nanoparticles between non-resonant ones. Since the latter haven’t proper size to resonantly interact with pump radiation during Raman signal mapping, encrypted information can be revealed via evident variation in Raman yield between resonant and non-resonant nanoparticles. Thereby, we demonstrated facile single step printing of anti-counterfeiting labels at resolution up to 60 000 dots per inch justifying the applicability of the developed approach for optical information encryption.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"120 1\",\"pages\":\"127730J - 127730J-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2688543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2688543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲激光加工作为一种灵活、高性能纳米结构的强大技术已日趋成熟。光-物质相互作用背后丰富的物理学原理可以产生具有所需特性的独特表面纳米材料,有利于各种实际应用,如光学传感、防伪、实现纳米光子平台等。在这里,我们应用直接飞秒激光打印技术,在玻璃支撑的非晶硅薄膜上局部制造纳米结构,以实现高分辨率(每英寸多达 60 000 点)防伪标签,通过多种方式提供全光学信息加密。由于拟议中的标签是由紧密堆积的非晶硅半球形纳米粒子组成的阵列,因此信息加密的第一种方法是通过连续波激光照射,在不改变形态的情况下选择性地使部分纳米粒子结晶。这样,按用户定义的方式有序排列的结晶纳米粒子就会显示出加密信息,这些信息可通过拉曼信号强度图谱在 519 cm-1 频率处读取,该频率与晶体硅的主要声子模式相对应。第二种方法是在非共振纳米粒子之间隐藏米氏共振纳米粒子。由于非共振纳米粒子的尺寸不适合在拉曼信号映射过程中与泵辐射发生共振作用,因此可以通过共振和非共振纳米粒子之间拉曼产率的明显变化来揭示加密信息。因此,我们展示了单步打印防伪标签的简便性,分辨率高达每英寸 60 000 点,证明了所开发的方法适用于光学信息加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Femtosecond-laser nanostructuring of silicon thin films for optical information encryption
Pulsed laser processing matures as a powerful technique for flexible and high-performing nanostructuration. Rich physics behind the light-matter interaction allows to produce unique surface nanotextures with desired properties, beneficial for various practically-relevant applications such as optical sensing, anti-counterfeiting, realization of nanophotonic platforms and so on. Here we have applied direct femtosecond-laser printing to locally fabricate nanostructures on glass-supported amorphous-silicon thin film for realization of high-resolution (up to 60 000 dots per inch) security labels offering full-optical information encryption in several ways. Since the proposed tag represents array of close-packed amorphous-silicon hemispherical nanoparticles, the first approach for information encryption is to selectively crystallize some of nanoparticles by continuous-wave laser irradiation without morphological changes. Thus, crystalized nanoparticles ordered in a user-defined way indicate encrypted information that can be read using Raman signal intensity mapping at frequency of 519 cm−1, corresponding to the main phonon mode of crystalline silicon. The second way is to hide Mie-resonant nanoparticles between non-resonant ones. Since the latter haven’t proper size to resonantly interact with pump radiation during Raman signal mapping, encrypted information can be revealed via evident variation in Raman yield between resonant and non-resonant nanoparticles. Thereby, we demonstrated facile single step printing of anti-counterfeiting labels at resolution up to 60 000 dots per inch justifying the applicability of the developed approach for optical information encryption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1