Ying Qin, Guoqing Hu, Tengfei Wu, Guangwei Chen, Zhehai Zhou, Li Chen, Pengyu Yan, Yue Zhao, Xiaochun Liao, Hetian Li
{"title":"从波长/偏振多路光纤激光器中产生单腔三重炸弹脉冲","authors":"Ying Qin, Guoqing Hu, Tengfei Wu, Guangwei Chen, Zhehai Zhou, Li Chen, Pengyu Yan, Yue Zhao, Xiaochun Liao, Hetian Li","doi":"10.1117/12.2687275","DOIUrl":null,"url":null,"abstract":"A single-cavity triple-comb all-fiber laser is proposed by wavelength/polarization multiplexing. A variable optical attenuator is introduced to equalize the 1530-nm and 1550-nm gain profile of erbium-doped fiber for dual-wavelength pulses. Their repetition rate difference reach kHz level. Meanwhile, by further adjusting the intracavity polarization state, polarization-multiplexed dual-comb pulses with tens-of-Hz repetition rate difference in the 1550-nm gain region are obtained. The more than one-order-of-magnitude difference between the maximum and minimum repetition frequency difference and qualified passive mutual coherence of triple-frequency pulses is highlighted. These results indicate a highly potential triple-comb source for multiple-comb metrology such as triple-comb ranging and frequency measurement and so on.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"32 1","pages":"127600X - 127600X-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generation of single-cavity triple-comb pulses from a wavelength/polarization multiplexed fiber laser\",\"authors\":\"Ying Qin, Guoqing Hu, Tengfei Wu, Guangwei Chen, Zhehai Zhou, Li Chen, Pengyu Yan, Yue Zhao, Xiaochun Liao, Hetian Li\",\"doi\":\"10.1117/12.2687275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-cavity triple-comb all-fiber laser is proposed by wavelength/polarization multiplexing. A variable optical attenuator is introduced to equalize the 1530-nm and 1550-nm gain profile of erbium-doped fiber for dual-wavelength pulses. Their repetition rate difference reach kHz level. Meanwhile, by further adjusting the intracavity polarization state, polarization-multiplexed dual-comb pulses with tens-of-Hz repetition rate difference in the 1550-nm gain region are obtained. The more than one-order-of-magnitude difference between the maximum and minimum repetition frequency difference and qualified passive mutual coherence of triple-frequency pulses is highlighted. These results indicate a highly potential triple-comb source for multiple-comb metrology such as triple-comb ranging and frequency measurement and so on.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"32 1\",\"pages\":\"127600X - 127600X-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2687275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2687275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The generation of single-cavity triple-comb pulses from a wavelength/polarization multiplexed fiber laser
A single-cavity triple-comb all-fiber laser is proposed by wavelength/polarization multiplexing. A variable optical attenuator is introduced to equalize the 1530-nm and 1550-nm gain profile of erbium-doped fiber for dual-wavelength pulses. Their repetition rate difference reach kHz level. Meanwhile, by further adjusting the intracavity polarization state, polarization-multiplexed dual-comb pulses with tens-of-Hz repetition rate difference in the 1550-nm gain region are obtained. The more than one-order-of-magnitude difference between the maximum and minimum repetition frequency difference and qualified passive mutual coherence of triple-frequency pulses is highlighted. These results indicate a highly potential triple-comb source for multiple-comb metrology such as triple-comb ranging and frequency measurement and so on.