基于智能语义识别的网络舆情监测雾计算架构

Jing-Zhe Xu
{"title":"基于智能语义识别的网络舆情监测雾计算架构","authors":"Jing-Zhe Xu","doi":"10.1002/itl2.492","DOIUrl":null,"url":null,"abstract":"Currently, the online data contains rich user emotional information and public opinion information. These data can provide massive support for network public opinion monitoring and analysis. However, there are two problems in the network public opinion analysis of the online data. On the one hand, a vast amount of online data with discursiveness and concealment are processed in the cloud platforms, which consumes a long time. On the other hand, the massive online public opinion data is disperse and hidden, resulting in the dependence on manual screening for the analysis of public opinion. Therefore, it is still an important challenge to study the efficient and low‐latency extraction of valuable information from network public opinion. In this paper, we proposed a fog computing based framework using the technologies of intelligent semantic recognition and data mining for the analysis of network public opinion. Firstly, we build a fog computing architecture to collect the text data of network public opinion. Then, an efficient network public opinion model is constructed by intelligence semantic recognition. Finally, we achieve the function of public opinion analysis and early warning. The experimental results show that the method proposed in this paper achieves better performance against some existing methods.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fog‐computing architecture for network public opinion monitoring based on intelligent semantic recognition\",\"authors\":\"Jing-Zhe Xu\",\"doi\":\"10.1002/itl2.492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the online data contains rich user emotional information and public opinion information. These data can provide massive support for network public opinion monitoring and analysis. However, there are two problems in the network public opinion analysis of the online data. On the one hand, a vast amount of online data with discursiveness and concealment are processed in the cloud platforms, which consumes a long time. On the other hand, the massive online public opinion data is disperse and hidden, resulting in the dependence on manual screening for the analysis of public opinion. Therefore, it is still an important challenge to study the efficient and low‐latency extraction of valuable information from network public opinion. In this paper, we proposed a fog computing based framework using the technologies of intelligent semantic recognition and data mining for the analysis of network public opinion. Firstly, we build a fog computing architecture to collect the text data of network public opinion. Then, an efficient network public opinion model is constructed by intelligence semantic recognition. Finally, we achieve the function of public opinion analysis and early warning. The experimental results show that the method proposed in this paper achieves better performance against some existing methods.\",\"PeriodicalId\":509592,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/itl2.492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,网络数据包含丰富的用户情感信息和舆情信息。这些数据可以为网络舆情监测和分析提供大量支持。然而,网络数据的网络舆情分析存在两个问题。一方面,大量具有辨识度和隐蔽性的网络数据需要在云平台上进行处理,耗时较长。另一方面,海量的网络舆情数据具有分散性和隐蔽性,导致舆情分析需要依赖人工筛选。因此,研究如何高效、低延迟地从网络舆情中提取有价值的信息仍是一项重要挑战。本文利用智能语义识别和数据挖掘技术,提出了一种基于雾计算的网络舆情分析框架。首先,我们构建了一个雾计算架构来收集网络舆情文本数据。然后,通过智能语义识别构建高效的网络舆情模型。最后,实现舆情分析与预警功能。实验结果表明,与现有的一些方法相比,本文提出的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fog‐computing architecture for network public opinion monitoring based on intelligent semantic recognition
Currently, the online data contains rich user emotional information and public opinion information. These data can provide massive support for network public opinion monitoring and analysis. However, there are two problems in the network public opinion analysis of the online data. On the one hand, a vast amount of online data with discursiveness and concealment are processed in the cloud platforms, which consumes a long time. On the other hand, the massive online public opinion data is disperse and hidden, resulting in the dependence on manual screening for the analysis of public opinion. Therefore, it is still an important challenge to study the efficient and low‐latency extraction of valuable information from network public opinion. In this paper, we proposed a fog computing based framework using the technologies of intelligent semantic recognition and data mining for the analysis of network public opinion. Firstly, we build a fog computing architecture to collect the text data of network public opinion. Then, an efficient network public opinion model is constructed by intelligence semantic recognition. Finally, we achieve the function of public opinion analysis and early warning. The experimental results show that the method proposed in this paper achieves better performance against some existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative resource allocation mechanism for optimizing 5G multi user‐massive multiple input multiple output system An Internet of Things security‐based E parking framework for smart city application using Lora Performance evaluation and investigation of diffraction optical elements effect on bit error rate of free space optics and performance investigation of space uplink wireless optical communication under varying atmospheric turbulence conditions Design and analysis of stochastic 5G new radio LDPC decoder using adaptive sparse quantization kernel least mean square algorithm for optical satellite communications Research on the application of English short essay reading emotional analysis in online English teaching under IoT scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1